Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-reciprocal Brillouin scattering induced transparency

Abstract

Electromagnetically induced transparency provides a powerful mechanism for controlling light propagation in a dielectric medium, and for producing slow and fast light. Electromagnetically induced transparency traditionally arises from destructive interference induced by a non-radiative coherence in an atomic system. Stimulated Brillouin scattering of light from propagating hypersonic acoustic waves has also been used successfully for the generation of slow and fast light. However, Electromagnetically induced transparency-type processes based on stimulated Brillouin scattering were considered infeasible because of the short coherence lifetime of hypersonic phonons. Here, we report a new Brillouin scattering induced transparency phenomenon generated by acousto-optic interaction of light with long-lived propagating phonons in a silica resonator. We demonstrate that Brillouin scattering induced transparency is uniquely non-reciprocal owing to the propagating acoustic wave and accompanying momentum conservation requirement. We also show that Brillouin scattering induced transparency enables ultralow-power ultralow-footprint slow-light generation with delay-bandwidth product comparable to state-of-the-art stimulated Brillouin scattering systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical description of BSIT.
Figure 3: Observation of BSIT and slow light.
Figure 5: Demonstration of non-reciprocity in BSIT.
Figure 2: Experimental set-up for BSIT.
Figure 4: Observation of Brillouin scattering induced opacity and fast light.

Similar content being viewed by others

References

  1. Chiao, R. Y., Townes, C. H. & Stoicheff, B. P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592–595 (1964).

    Article  ADS  Google Scholar 

  2. Shen, Y. R. & Bloembergen, N. Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137, A1787–A1805 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  3. Yariv, A. Quantum theory for parametric interactions of light and hypersound. IEEE J. Quantum Electron. 1, 28–36 (1965).

    Article  ADS  Google Scholar 

  4. Boyd, R. W. Nonlinear Optics Ch. 9, 3rd edn (Elsevier, 2008).

    Google Scholar 

  5. Li, J., Lee, H., Chen, T. & Vahala, K. J. Characterization of a high coherence, Brillouin microcavity laser on silicon. Opt. Express 20, 20170–20180 (2012).

    Article  ADS  Google Scholar 

  6. Debut, A., Randoux, S. & Zemmouri, J. Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers. J. Opt. Soc. Am. B 18, 556–567 (2001).

    Article  ADS  Google Scholar 

  7. Zel’dovich, B. Y., Popocivhec, V. I., Ragul’skii, V. V. & Faisullov, F. S. Connection between the wave fronts of the reflected and exciting light in stimulated Mandelshtam–Brillouin scattering. JETP Lett. 15, 109 (1972).

    ADS  Google Scholar 

  8. Pant, R. et al. Observation of Brillouin dynamic grating in a photonic chip. Opt. Lett. 38, 305–307 (2013).

    Article  ADS  Google Scholar 

  9. Montrose, C. J., Solovyev, V. A. & Litovitz, T. A. Brillouin scattering and relaxation in liquids. J. Acoust. Soc. Am. 43, 117 (1968).

    Article  ADS  Google Scholar 

  10. Lee, S. A. et al. A Brillouin scattering study of the hydration of Li- and Na-DNA films. Biopolymers 26, 1637–1665 (1987).

    Article  Google Scholar 

  11. Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nature Mater. 5, 830–836 (2006).

    Article  ADS  Google Scholar 

  12. Rich, T. C. & Pinnow, D. A. Total optical attenuation in bulk fused silica. Appl. Phys. Lett. 20, 264–266 (1972).

    Article  ADS  Google Scholar 

  13. Pinnow, D. A., Candau, S. J., LaMacchia, J. T. & Litovitz, T. A. Brillouin scattering: Viscoelastic measurements in liquids. J. Acoust. Soc. Am. 43, 131 (1968).

    Article  ADS  Google Scholar 

  14. Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nature Photon. 2, 39–43 (2007).

    Article  ADS  Google Scholar 

  15. Song, K. Y., Herráez, M. G. & Thévenaz, L. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express 13, 82–88 (2005).

    Article  ADS  Google Scholar 

  16. Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).

    Article  ADS  Google Scholar 

  17. Thévenaz, L. Slow and fast light in optical fibres. Nature Photon. 2, 474–481 (2008).

    Article  ADS  Google Scholar 

  18. Boyd, R. W. & Gauthier, D. J. Controlling the velocity of light pulses. Science 326, 1074–1077 (2009).

    Article  ADS  Google Scholar 

  19. Boller, K. J., Imamolu, A. & Harris, S. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).

    Article  ADS  Google Scholar 

  20. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  21. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  22. Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nature Commun. 4, 1944 (2013).

    Article  ADS  Google Scholar 

  23. Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Phys. 2, 388–392 (2006).

    Article  ADS  Google Scholar 

  24. Bahl, G., Zehnpfennig, J., Tomes, M. & Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nature Commun. 2, 403 (2011).

    Article  ADS  Google Scholar 

  25. Bahl, G., Tomes, M., Marquardt, F. & Carmon, T. Observation of spontaneous Brillouin cooling. Nature Phys. 8, 203–207 (2012).

    Article  ADS  Google Scholar 

  26. Arve, P., Jänes, P. & Thylén, L. Propagation of two-dimensional pulses in electromagnetically induced transparency media. Phys. Rev. A 69, 063809 (2004).

    Article  ADS  Google Scholar 

  27. Huang, X. & Fan, S. Complete all-optical silica fiber isolator via stimulated Brillouin scattering. J. Lightwave Technol. 29, 2267–2275 (2011).

    Article  ADS  Google Scholar 

  28. Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

    Article  ADS  Google Scholar 

  29. Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nature Photon. 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  30. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  ADS  Google Scholar 

  31. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    Article  ADS  Google Scholar 

  32. Dong, C., Fiore, V., Kuzyk, M. C. & Wang, H. Transient optomechanically induced transparency in a silica microsphere. Phys. Rev. A 87, 055802 (2013).

    Article  ADS  Google Scholar 

  33. Grudinin, I. S., Matsko, A. B. & Maleki, L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett. 102, 043902 (2009).

    Article  ADS  Google Scholar 

  34. Tomes, M. & Carmon, T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett. 102, 113601 (2009).

    Article  ADS  Google Scholar 

  35. Gorodetsky, M. & Ilchenko, V. S. Optical microsphere resonators: Optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

    Article  ADS  Google Scholar 

  36. Agarwal, G. S. & Huang, S. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010).

    Article  ADS  Google Scholar 

  37. Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. & Vahala, K. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).

    Article  ADS  Google Scholar 

  38. Agarwal, G. S. & Jha, S. S. Multimode phonon cooling via three-wave parametric interactions with optical fields. Phys. Rev. A 88, 013815 (2013).

    Article  ADS  Google Scholar 

  39. Boyd, R. W. & Gauthier, D. J. “Slow” and “fast” light. Prog. Opt. 43, 497–530 (2002).

    Article  ADS  Google Scholar 

  40. Pant, R. et al. Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering. Opt. Lett. 37, 969–971 (2012).

    Article  ADS  Google Scholar 

  41. Lezama, A., Barreiro, S. & Akulshin, A. M. Electromagnetically induced absorption. Phys. Rev. A 59, 4732–4735 (1999).

    Article  ADS  Google Scholar 

  42. Ju, H., Ren, L., Lin, X., Liang, J. & Ma, C. Wide-range continuously-tunable slow-light delay line based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett. 25, 1920–1923 (2013).

    Article  ADS  Google Scholar 

  43. Yi, L., Zhan, L., Hu, W. & Xia, Y. Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump. IEEE Photon. Technol. Lett. 19, 619–621 (2007).

    Article  ADS  Google Scholar 

  44. Herráez, M. G., Song, K. Y. & Thévenaz, L. Arbitrary-bandwidth Brillouin slow light in optical fibers. Opt. Express 14, 1395–1400 (2006).

    Article  ADS  Google Scholar 

  45. Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nature Commun. 4, 2097 (2013).

    Article  ADS  Google Scholar 

  46. Rakich, P., Reinke, C., Camacho, R., Davids, P. & Wang, Z. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X 2, 011008 (2012).

    Google Scholar 

  47. Turik, A., Yesis, A. & Reznitchenko, L. Negative longitudinal electrostriction in polycrystalline ferroelectrics: A nonlinear approach. J. Phys. Condens. Matter 18, 4839 (2006).

    Article  ADS  Google Scholar 

  48. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided through a University of Illinois Startup Grant, Office of the Vice Chancellor for Research Research Board Grant, the National Science Foundation (NSF), and the Air Force Office for Scientific Research (AFOSR). M.C.K. and H.W. are supported in part by NSF grant PHY-1205544. J.K. and G.B. are supported in part by NSF grant ECCS-1408539 and AFOSR grant FA9550-14-1-0217. We would like to acknowledge stimulating discussions and guidance from K. Toussaint, L. Wagner, R. Bashir, L. Liu, L. Goddard, K. Qu and P. Dragic.

Author information

Authors and Affiliations

Authors

Contributions

J.K., M.C.K., H.W. and G.B. designed and conceived the experiments. J.K. and K.H. developed the experimental set-up and carried out the experiments. J.K., M.C.K., H.W. and G.B. analysed the data and co-wrote the paper. G.B. supervised all aspects of this project.

Corresponding author

Correspondence to Gaurav Bahl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kuzyk, M., Han, K. et al. Non-reciprocal Brillouin scattering induced transparency. Nature Phys 11, 275–280 (2015). https://doi.org/10.1038/nphys3236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing