Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Active gel physics

Abstract

The mechanical behaviour of cells is largely controlled by a structure that is fundamentally out of thermodynamic equilibrium: a network of crosslinked filaments subjected to the action of energy-transducing molecular motors. The study of this kind of active system was absent from conventional physics and there was a need for both new theories and new experiments. The field that has emerged in recent years to fill this gap is underpinned by a theory that takes into account the transduction of chemical energy on the molecular scale. This formalism has advanced our understanding of living systems, but it has also had an impact on research in physics per se. Here, we describe this developing field, its relevance to biology, the novelty it conveys to other areas of physics and some of the challenges in store for the future of active gel physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of an active gel consisting of actin filaments, myosin motors and passive crosslinks (not shown).
Figure 2: The process of cytokinesis.
Figure 3: Cortical flows observed in the Caenorhabditis elegans embryo.

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular Biology of the Cell 5th edn (Garland Science, 2008).

    Google Scholar 

  2. Janmey, P. A., Euteneuer, U., Traub, P. & Schliwa, M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell. Biol. 113, 155–160 (1991).

    Article  Google Scholar 

  3. Herrmann, H., Bär, H., Kreplak, L., Strelkov, S. V. & Aebi, U. Intermediate filaments: from cell architecture to nanomechanics. Nature Rev. Mol. Cell. Biol. 8, 562–573 (2007).

    Article  Google Scholar 

  4. Bausch, A. R. & Kroy, K. A bottom up approach to cell mechanics. Nature Phys. 2, 231–236 (2006).

    Article  ADS  Google Scholar 

  5. Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 3722, 536–545 (2012).

    Article  Google Scholar 

  6. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article  ADS  Google Scholar 

  7. Steinberg, I. Z., Oplatky, A. & Katchalsky, A. Mechanochemical engines. Nature 201, 568–571 (1966).

    Article  ADS  Google Scholar 

  8. Martin, P. C., Parodi, O. & Pershan, P. S. Unified hydrodynamic theory for crystals, liquid crystals and normal fluids. Phys. Rev. A 6, 2401–2420 (1972).

    Article  ADS  Google Scholar 

  9. Simha, R. A. & Ramaswamy, S. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002).

    Article  ADS  MATH  Google Scholar 

  10. Hatwalne, Y., Ramaswamy, S., Rao, M. & Simha, R. A. Rheology of active-particle suspensions. Phys. Rev. Lett. 92, 118101 (2004).

    Article  ADS  Google Scholar 

  11. Kruse, K., Joanny, J-F., Jülicher, J., Prost, J. & Sekimoto, K. Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett. 92, 078101 (2004).

    Article  ADS  Google Scholar 

  12. Kruse, K., Joanny, J-F., Jülicher, J., Prost, J. & Sekimoto, K. Generic theory of active polar gels: A paradigm for cytoskeletal dynamics. Eur. Phys. J. E 16, 5–16 (2005).

    Article  Google Scholar 

  13. Kruse, K. & Jülicher, J. Actively contracting bundles of polar filaments. Phys. Rev. Lett. 85, 1778–1781 (2000).

    Article  ADS  Google Scholar 

  14. Liverpool, T. B. & Marchetti, M. C. Instabilities of isotropic solutions of active polar filaments. Phys. Rev. Lett. 90, 138102 (2003).

    Article  ADS  Google Scholar 

  15. Liverpool, T. B. & Marchetti, M. C. Bridging the microscopic and the hydrodynamic in active filament solutions. Europhys. Lett. 69, 846–852 (2005).

    Article  ADS  Google Scholar 

  16. Giomi, L., Marchetti, M. C. & Liverpool, T. Complex spontaneous flows and concentration banding in active polar films. Phys. Rev. Lett. 101, 198101 (2008).

    Article  ADS  Google Scholar 

  17. Kruse, K., Joanny, J. F., Jülicher, F. & Prost, J. Contractility and retrograde flow in lamellipodium motion. Phys. Biol. 3, 130–137 (2006).

    Article  ADS  Google Scholar 

  18. Callan-Jones, A. C. & Jülicher, F. Hydrodynamics of active permeating gels. New J. Phys. 13, 093027 (2011).

    Article  ADS  Google Scholar 

  19. Sase, I., Miyata, H., Ishiwata, S. & Kinosita, K. Jr Axial rotation of sliding actin filaments revealed by single-fluorophore imaging. Proc. Natl Acad. Sci. USA 94, 5646–5650 (1997).

    Article  ADS  Google Scholar 

  20. Fürthauer, S., Strempel, M., Grill, S. W. & Jülicher, F. Active chiral fluids. Eur. Phys. J. E 35, 89 (2012).

    Article  Google Scholar 

  21. Fürthauer, S., Strempel, M., Grill, S. W. & Jülicher, F. Active chiral processes in thin films. Phys. Rev. Lett. 110, 048103 (2012).

    Article  ADS  Google Scholar 

  22. Nedelec, F., Surrey, T., Maggs, A. C. & Leibler, S. Selforganization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  ADS  Google Scholar 

  23. Adhyapak, T. C., Ramaswamy, S. & Toner, J. Live soap: stability, order, and fluctuations in apolar active smectics. Phys. Rev. Lett. 110, 118102 (2013).

    Article  ADS  Google Scholar 

  24. De Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Clarendon Press, 1993).

    Google Scholar 

  25. Voituriez, R., Joanny, J. F. & Prost, J. Spontaneous flow transition in active polar gels. Europhys. Lett. 70, 404–410 (2005).

    Article  ADS  Google Scholar 

  26. Voituriez, R., Joanny, J. F. & Prost, J. Generic phase diagram of active polar films. Phys. Rev. Lett. 96, 28102 (2006).

    Article  ADS  Google Scholar 

  27. Giomi, L., Mahadevan, L., Chakraborty, B. & Hagan, M. F. Excitable patterns in active nematics. Phys. Rev. Lett. 106, 218101 (2011).

    Article  ADS  Google Scholar 

  28. Giomi, L., Mahadevan, L., Chakraborty, B. & Hagan, M. F. Banding, excitability and chaos in active nematic suspensions. Nonlinearity 25, 2245–2269 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Ramaswamy, S. & Rao, M. Active-filament hydrodynamics: instabilities, boundary conditions and rheology. New J. Phys. 9, 423 (2007).

    Article  ADS  Google Scholar 

  30. Fielding, S. M., Marenduzzo, D. & Cates, M. E. Nonlinear dynamics and rheology of active fluids: Simulations in two dimensions. Phys. Rev. E 83, 041910 (2011).

    Article  ADS  Google Scholar 

  31. Bois, J. S., Jülicher, F. & Grill, S. W. Pattern formation in active fluids. Phys. Rev. Lett. 106, 028103 (2011).

    Article  ADS  Google Scholar 

  32. Giomi, L., Bowick, M. J., Ma, X. & Marchetti, M. C. Defect annihilation and proliferation in active nematics. Phys. Rev. Lett. 110, 228101 (2013).

    Article  ADS  Google Scholar 

  33. Keber, F. C. et al. Topology and dynamics of active nematic vesicles. Science 345, 1135–1139 (2014).

    Article  ADS  Google Scholar 

  34. Thampi, S. P., Golestanian, R. & Yeomans, J. M. Velocity correlations in an active nematic. Phys. Rev. Lett. 111, 118101 (2013).

    Article  ADS  Google Scholar 

  35. Pismen, L. M. Dynamics of defects in an active nematic layer. Phys. Rev. E 88, 050502 (2013).

    Article  ADS  Google Scholar 

  36. Wang, H. et al. Necking and failure of constrained 3D microtissues induced by cellular tension. Proc. Natl Acad. Sci. USA 110, 20923–20928 (2013).

    Article  ADS  Google Scholar 

  37. Sheinman, M., Sharma, A., Alvarado, J., Koenderink, G. H. & MacKintosh, F. C. Active biopolymer networks generate scale-free but Euclidean clusters. Preprint at http://arxiv.org/abs/1402.2623 (2014).

  38. Berthier, L. & Kurchan, J. Non-equilibrium glass transitions in driven and active matter. Nature Phys. 9, 310314 (2013).

    Article  ADS  Google Scholar 

  39. Henkes, S., Fily, Y. & Marchetti, M. C. Active jamming: Self-propelled soft particles at high density. Phys. Rev. E 84, 040301 (2011).

    Article  ADS  Google Scholar 

  40. Joanny, J-F., Kruse, K., Prost, J. & Ramaswamy, S. The actin cortex as an active wetting layer. Eur. Phys. J. E 36, 52 (2013).

    Article  Google Scholar 

  41. Maitra, A., Srivastava, P., Rao, M. & Ramaswamy, S. Activating membranes. Phys. Rev. Lett. 112, 258101 (2014).

    Article  ADS  Google Scholar 

  42. Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    Article  ADS  Google Scholar 

  43. Levine, A. J. & MacKintosh, F. C. The mechanics and fluctuation spectrum of active gels. J. Phys. Chem. B 113, 3820–3830 (2009) (P-G. de Gennes memorial issue).

    Article  Google Scholar 

  44. Basu, A., Joanny, J-F., Jülicher, F. & Prost, J. Anomalous behavior of the diffusion coefficient in thin active films. New. J. Phys. 14, 115001 (2012).

    Article  ADS  Google Scholar 

  45. De Gennes, P. G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).

    Google Scholar 

  46. Humphrey, D., Duggan, C., Saha, D., Smith, D. & Käs, J. Active fluidization of polymer networks through molecular motors. Nature 416, 413–416 (2002).

    Article  ADS  Google Scholar 

  47. Callan-Jones, A., Joanny, J. F. & Prost, J. Viscous-fingering-like instability of cell fragments. Phys. Rev. Lett. 100, 258106 (2008).

    Article  ADS  Google Scholar 

  48. Callan-Jones, A. & Voituriez, R. Active gel model of amoeboid cell motility. New. J. Phys. 15, 025022 (2013).

    Article  ADS  Google Scholar 

  49. Tjhung, E., Marenduzzo, M. & Cates, M. E. Spontaneous symmetry breaking in active droplets provides a generic route to motility . Proc. Natl Acad. Sci. USA 109, 12381–12386 (2012).

    Article  ADS  Google Scholar 

  50. Shao, D., Rappel, W. J. & Levine, H. Computational model for cell morphodynamics. Phys. Rev. Lett. 105, 108104 (2010).

    Article  ADS  Google Scholar 

  51. Hawkins, R. W. et al. Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. Biophys. J. 101, 1041–1045 (2011).

    Article  ADS  Google Scholar 

  52. Blanch-Mercader, C. & Casademunt, J. Spontaneous motility of actin lamellar fragments. Phys. Rev. Lett. 110, 078102 (2013).

    Article  ADS  Google Scholar 

  53. Salbreux, G., Joanny, J. F., Prost, J. & Pullarkat, P. Shape oscillations of non-adhering fibroblast cells. Phys. Biol. 4, 268–284 (2007).

    Article  ADS  Google Scholar 

  54. He, X. & Dembo, M. On the mechanics of the first cleavage division of the sea urchin egg. Exp. Cell Res. 233, 252–273 (1997).

    Article  Google Scholar 

  55. Salbreux, G., Prost, J. & Joanny, J-F. Hydrodynamics of cellular cortical flows and the formation of contractile rings. Phys. Rev. Lett. 103, 058102 (2009).

    Article  ADS  Google Scholar 

  56. Turlier, H., Audoly, B., Prost, J. & Joanny, J. F. Furrow constriction in animal cell cytokinesis. Biophys. J. 106, 114–123 (2014).

    Article  ADS  Google Scholar 

  57. Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    Article  ADS  Google Scholar 

  58. Mayer, M., Depken, M., Bois, J. S., Jülicher, F. & Grill, S. W. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467, 617–621 (2010).

    Article  ADS  Google Scholar 

  59. Tinevez, J. Y. et al. Role of cortical tension in bleb growth. Proc. Natl Acad. Sci. USA 106, 18581–18586 (2009).

    Article  ADS  Google Scholar 

  60. Kumar, A., Maitra, A., Sumit, M., Ramaswamy, S. & Shivashankar, G. V. Actomyosin contractility rotates the cell nucleus. Sci. Rep. 4, 3781 (2013).

    Article  Google Scholar 

  61. Brugues, J. & Needleman, D. J. Physical basis of spindle self-organisation. Proc. Natl Acad. Sci. USA (2014) http://dx.doi.org/10.1073/pnas.1409404111 (2014).

  62. Nicolas, A., Besser, A. & Safran, S. A. Is the mechanics of cell-matrix adhesion amenable to physical modeling? J. Adhes. Sci. Technol. 24, 2203–2214 (2010).

    Article  Google Scholar 

  63. Schwarz, U. S., Erdmann, T. & Bischofs, I. B. Focal adhesions as mechanosensors: The two-spring model. Biosystems 83, 225–232 (2006).

    Article  Google Scholar 

  64. Marcq, P., Yoshinaga, N. & Prost, J. Rigidity sensing explained by active matter theory. Biophys. J. 101, L33–L35 (2011).

    Article  Google Scholar 

  65. Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097 (2008).

    Article  Google Scholar 

  66. Fischer-Friedrich, E., Hyman, A. A., Jülicher, F., Müller, D. & Helenius, J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci. Rep. 4, 6213 (2014).

    Article  ADS  Google Scholar 

  67. Lecuit, T. & Lenne, P-F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 102, 633–644 (2007).

    Article  Google Scholar 

  68. Heisenberg, C. P. & Bellaïche, Y. Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013).

    Article  Google Scholar 

  69. Bittig, T., Wartlick, O., Kicheva, A., Gonzalez-Gaitan, M. & Jülicher, F. Dynamics of anisotropic tissue growth. New J. Phys. 10, 063001 (2008).

    ADS  Google Scholar 

  70. Ranft, J. et al. Fluidization of tissues by cell division and apoptosis. Proc. Natl Acad. Sci. USA 107, 20863–20868 (2010).

    Article  ADS  Google Scholar 

  71. Delarue, M., Joanny, J. F., Jülicher, F. & Prost, J. Stress distributions and cell flows in a growing cell aggregate. Interface Focus 4, 20140033 (2014).

    Article  Google Scholar 

  72. Gruler, H. Fluid self-organized machines. Liquid Crystals 24, 49–66 (1998).

    Article  Google Scholar 

  73. Aigouy, B. et al. Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142, 773–786 (2010).

    Article  Google Scholar 

  74. Behrndt, M. et al. Forces driving epithelial spreading in zebrafish gastrulation. Science 338, 257–260 (2012).

    Article  ADS  Google Scholar 

  75. Sheftel, H., Shoval, O., Mayo, A. & Alon, U. The geometry of the Pareto front in biological phenotype space. Ecol. Evol. 3, 1471–1483 (2013).

    Article  Google Scholar 

  76. Loewy, A. G. An actomyosin-like substance from the plasmodium of a myxomycete. J. Cell. Comp. Physiol. 40, 127–156 (1952).

    Article  Google Scholar 

  77. Bettex-Galland, M. & Lüscher, E. F. Extraction of an actomyosin-like protein from human thrombocytes. Nature 185, 276–277 (1959).

    Article  ADS  Google Scholar 

  78. Bendix, P. M. et al. A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys. J. 94, 3126–3136 (2008).

    Article  ADS  Google Scholar 

  79. Ebashi, S., Ebashi, F. & Maruyama, K. A new protein factor promoting contraction of actomyosin. Nature 203, 645–646 (1964).

    Article  ADS  Google Scholar 

  80. Sengupta, K. et al. Coupling artificial actin cortices to biofunctionalized lipid monolayers. Langmuir 22, 5776–5785 (2006).

    Article  Google Scholar 

  81. Carvalho, K. et al. Cell-sized liposomes reveal how actomyosin cortical tension drives shape change. Proc. Natl Acad. Sci. USA 110, 16456–16461 (2013).

    Article  ADS  Google Scholar 

  82. Murrell, M. & Gardel, M. L. Actomyosin sliding is attenuated in contractile biomimetic cortices. Mol. Biol. Cell 25, 1845–1853 (2014).

    Article  Google Scholar 

  83. Shah, E. A. & Keren, K. Symmetry breaking in reconstituted actin cortices. eLife 3, e01433 (2014).

    Article  Google Scholar 

  84. Köhler, S., Schaller, V. & Bausch, A. R. Structure formation in active networks. Nature Mater. 10, 462–468 (2011).

    Article  ADS  Google Scholar 

  85. Gordon, D., Bernheim-Groswasser, A., Kaesar, C. & Farago, O. Hierarchical self-organization of cytoskeletal active networks. Phys. Biol. 9, 026005 (2012).

    Article  ADS  Google Scholar 

  86. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    Article  ADS  Google Scholar 

  87. Mushenheim, Peter C. et al. Dynamic self-assembly of motile bacteria in liquid crystals. Soft. Matter 10, 88–95 (2014).

    Article  ADS  Google Scholar 

  88. Shuang, Z., Sokolov, A., Lavrentovich, O. D. & Aranson, I. S. Living liquid crystals. Proc. Natl Acad. Sci. USA 111, 1265–1270 (2014).

    Article  ADS  Google Scholar 

  89. Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nature Rev. Mol. Cell Biol. 15, 825–833 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Grill, K. Kruse, C. Marchetti and S. Ramaswamy for many interesting discussions, and S. Marbach and H. Turlier for providing Figs 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Jülicher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prost, J., Jülicher, F. & Joanny, JF. Active gel physics. Nature Phys 11, 111–117 (2015). https://doi.org/10.1038/nphys3224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing