Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum many-body systems out of equilibrium

Abstract

How do closed quantum many-body systems driven out of equilibrium eventually achieve equilibration? And how do these systems thermalize, given that they comprise so many degrees of freedom? Progress in answering these—and related—questions has accelerated in recent years—a trend that can be partially attributed to success with experiments performing quantum simulations using ultracold atoms and trapped ions. Here we provide an overview of this progress, specifically in studies probing dynamical equilibration and thermalization of systems driven out of equilibrium by quenches, ramps and periodic driving. In doing so, we also address topics such as the eigenstate thermalization hypothesis, typicality, transport, many-body localization and universality near phase transitions, as well as future prospects for quantum simulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Greiner, M., Mandel, O., Hänsch, T. W. & Bloch, I. Collapse and revival of the matter wave field of a Bose–Einstein condensate. Nature 419, 51–54 (2002).

    Article  ADS  Google Scholar 

  2. Calabrese, P. & Cardy, J. Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006).

    Article  ADS  Google Scholar 

  3. Chiara, G. D., Montangero, S., Calabrese, P. & Fazio, R. Entanglement entropy dynamics of Heisenberg chains. J. Stat. Mech. 2006, P03001 (2006).

    Article  MathSciNet  Google Scholar 

  4. Kollath, C., Läuchli, A. & Altman, E. Quench dynamics and non equilibrium phase diagram of the Bose–Hubbard model. Phys. Rev. Lett. 98, 180601 (2007).

    Article  ADS  Google Scholar 

  5. Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007).

    Article  ADS  Google Scholar 

  6. Cramer, M., Dawson, C. M., Eisert, J. & Osborne, T. J. Exact relaxation in a class of nonequilibrium quantum lattice systems. Phys. Rev. Lett. 100, 030602 (2008).

    Article  ADS  Google Scholar 

  7. Flesch, A., Cramer, M., McCulloch, I. P., Schollwöck, U. & Eisert, J. Probing local relaxation of cold atoms in optical superlattices. Phys. Rev. A 78, 033608 (2008).

    Article  ADS  Google Scholar 

  8. Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    Article  ADS  Google Scholar 

  9. Moeckel, M. & Kehrein, S. Interaction quench in the Hubbard model. Phys. Rev. Lett. 100, 175702 (2008).

    Article  ADS  Google Scholar 

  10. Manmana, S. R., Wessel, S., Noack, R. M. & Muramatsu, A. Time evolution of correlations in strongly interacting fermions after a quantum quench. Phys. Rev. B 79, 155104 (2009).

    Article  ADS  Google Scholar 

  11. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Non-equilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

    Article  ADS  Google Scholar 

  12. Yukalov, V. Equilibration and thermalization in finite quantum systems. Laser Phys. Lett. 8, 485–507 (2011).

    Google Scholar 

  13. Calabrese, P., Essler, F. H. L. & Fagotti, M. Quantum quench in the transverse-field Ising chain. Phys. Rev. Lett. 106, 227203 (2011).

    Article  ADS  Google Scholar 

  14. Trotzky, S. et al. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nature Phys. 8, 325–330 (2012).

    Article  ADS  Google Scholar 

  15. Caux, J-S. & Essler, F. H. L. Time evolution of local observables after quenching to an integrable model. Phys. Rev. Lett. 110, 257203 (2013).

    Article  ADS  Google Scholar 

  16. Barmettler, P., Punk, M., Gritsev, V., Demler, E. & Altman, E. Relaxation of antiferromagnetic order in spin-1/2 chains following a quantum quench. Phys. Rev. Lett. 102, 130603 (2009).

    Article  ADS  Google Scholar 

  17. Gogolin, C., Mueller, M. P. & Eisert, J. Absence of thermalization in non-integrable systems. Phys. Rev. Lett. 106, 040401 (2011).

    Article  ADS  Google Scholar 

  18. Cassidy, A. C., Clark, C. W. & Rigol, M. Generalized thermalization in an integrable lattice system. Phys. Rev. Lett. 106, 140405 (2011).

    Article  ADS  Google Scholar 

  19. Cramer, M. & Eisert, J. A quantum central limit theorem for non-equilibrium systems: Exact local relaxation of correlated states. New J. Phys. 12, 055020 (2010).

    Article  ADS  MATH  Google Scholar 

  20. Reimann, P. Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 101, 190403 (2008).

    Article  ADS  Google Scholar 

  21. Linden, N., Popescu, S., Short, A. J. & Winter, A. Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009).

    ADS  MathSciNet  Google Scholar 

  22. Short, A. J. & Farrelly, T. C. Quantum equilibration in finite time. New J. Phys. 14, 013063 (2012).

    Article  ADS  Google Scholar 

  23. Reimann, P. & Kastner, M. Equilibration of isolated macroscopic quantum systems. New J. Phys. 14, 043020 (2012).

    Article  ADS  Google Scholar 

  24. Langen, T., Geiger, R., Kuhnert, M., Rauer, B. & Schmiedmayer, J. Local emergence of thermal correlations in an isolated quantum many-body system. Nature Phys. 9, 640–643 (2013).

    Article  ADS  Google Scholar 

  25. Geiger, R., Langen, T., Mazets, I. & Schmiedmayer, J. Local relaxation and light-cone-like propagation of correlations in a trapped one-dimensional Bose gas. New J. Phys. 16, 053034 (2014).

    Article  ADS  Google Scholar 

  26. Torres-Herrera, E. J., Kollmar, D. & Santos, L. F. Relaxation and thermalization of isolated many-body quantum systems. Preprint at http://arXiv.org/abs/1403.6481 (2014).

  27. Venuti, L. C. & Zanardi, P. Universal time-fluctuations in near-critical out-of-equilibrium quantum dynamics. Phys. Rev. E 89, 022101 (2014).

    Article  ADS  Google Scholar 

  28. Calabrese, P. & Cardy, J. Entanglement and correlation functions following a local quench: A conformal field theory approach. J. Stat. Mech. 2007, P10004 (2007).

    Article  Google Scholar 

  29. Zangara, P. R. et al. Time fluctuations in isolated quantum systems of interacting particles. Phys. Rev. E 88, 032913 (2013).

    ADS  Google Scholar 

  30. Jurcevic, P. et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511, 202–205 (2014).

    Article  ADS  Google Scholar 

  31. Del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: Topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

    Article  ADS  Google Scholar 

  32. Braun, S. et al. Emergence of coherence and the dynamics of quantum phase transitions. Preprint at http://arXiv.org/abs/1403.7199 (2014).

  33. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    Article  ADS  Google Scholar 

  34. Dóra, B., Haque, M. & Zaránd, G. Crossover from adiabatic to sudden interaction quench in a Luttinger liquid. Phys. Rev. Lett. 106, 156406 (2011).

    Article  ADS  Google Scholar 

  35. Schützhold, R., Uhlmann, M., Xu, Y. & Fischer, U. R. Sweeping from the superfluid to the Mott phase in the Bose–Hubbard model. Phys. Rev. Lett. 97, 200601 (2006).

    Article  ADS  Google Scholar 

  36. Mossel, J., Palacios, G. & Caux, J-S. Geometric quenches in quantum integrable systems. J. Stat. Mech. 2010, L09001 (2010).

    Article  MathSciNet  Google Scholar 

  37. Alba, V. & Heidrich-Meisner, F. Entanglement spreading after a geometric quench in quantum spin chains. Phys. Rev. B 90, 075144 (2014).

    Article  ADS  Google Scholar 

  38. Bovensiepen, U., Petek, H. & Wolf, M. (eds) Dynamics at Solid State Surfaces and Interfaces (Wiley-VCH, 2010).

  39. Rigol, M. & Srednicki, M. Alternatives to eigenstate thermalization. Phys. Rev. Lett. 108, 110601 (2012).

    Article  ADS  Google Scholar 

  40. Rigol, M. Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103, 100403 (2009).

    Article  ADS  Google Scholar 

  41. Steinigeweg, R., Khodja, A., Niemeyer, H., Gogolin, C. & Gemmer, J. Pushing the limits of the eigenstate thermalization hypothesis towards mesoscopic quantum systems. Phys. Rev. Lett. 112, 130403 (2014).

    Article  ADS  Google Scholar 

  42. Beugeling, W., Moessner, R. & Haque, M. Finite-size scaling of eigenstate thermalization. Phys. Rev. E 89, 042112 (2014).

    Article  ADS  Google Scholar 

  43. Riera, A., Gogolin, C. & Eisert, J. Thermalization in nature and on a quantum computer. Phys. Rev. Lett. 108, 080402 (2012).

    Article  ADS  Google Scholar 

  44. Mueller, M. P., Adlam, E., Masanes, L. & Wiebe, N. Thermalization and canonical typicality in translation-invariant quantum lattice systems. Preprint at http://arXiv.org/abs/1312.7420 (2013).

  45. Altland, A. & Haake, F. Quantum chaos and effective thermalization. Phys. Rev. Lett. 108, 073601 (2012).

    Article  ADS  Google Scholar 

  46. Del Rio, L., Hutter, A., Renner, R. & Wehner, S. Relative thermalization. Preprint at http://arXiv.org/abs/1401.7997 (2014).

  47. Goldstein, S., Lebowitz, J. L., Tumulka, R. & Zanghì, N. Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  48. Popescu, S., Short, A. J. & Winter, A. Entanglement and the foundations of statistical mechanics. Nature Phys. 2, 754–758 (2006).

    Article  ADS  Google Scholar 

  49. Caux, J-S. & Mossel, J. Remarks on the notion of quantum integrability. J. Stat. Mech. 2011, P02023 (2011).

    Google Scholar 

  50. Mussardo, G. Infinite-time average of local fields in an integrable quantum field theory after a quantum quench. Phys. Rev. Lett. 111, 100401 (2013).

    Article  ADS  Google Scholar 

  51. Wouters, B. et al. Quenching the anisotropic Heisenberg chain: Exact solution and generalised Gibbs ensemble predictions. Phys. Rev. Lett. 113, 117202 (2014).

    Article  ADS  Google Scholar 

  52. Pozsgay, B. et al. Correlations after quantum quenches in the XXZ spin chain: Failure of the generalized Gibbs ensemble. Phys. Rev. Lett. 113, 117203 (2014).

    Article  ADS  Google Scholar 

  53. Berges, J., Borsányi, S. & Wetterich, C. Prethermalization. Phys. Rev. Lett. 93, 142002 (2004).

    Article  ADS  Google Scholar 

  54. Marcuzzi, M., Marino, J., Gambassi, A. & Silva, A. Prethermalization in a nonintegrable quantum spin chain after a quench. Phys. Rev. Lett. 111, 197203 (2013).

    Article  ADS  Google Scholar 

  55. Essler, F. H. L., Kehrein, S., Manmana, S. R. & Robinson, N. J. Quench dynamics in a model with tuneable integrability breaking. Phys. Rev. B 89, 165104 (2014).

    Article  ADS  Google Scholar 

  56. Gring, M. et al. Relaxation and pre-thermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    Article  ADS  Google Scholar 

  57. Hastings, M. B. & Koma, T. Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Nachtergaele, B. & Sims, R. in New Trends in Mathematical Physics (ed Sidoravic̆ius, V.) 591 (Springer, 2009).

    Book  Google Scholar 

  59. Bravyi, S., Hastings, M. B. & Verstraete, F. Lieb–Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006).

    Article  ADS  Google Scholar 

  60. Kliesch, M., Gogolin, C. & Eisert, J. in Many-Electron Approaches in Physics, Chemistry and Mathematics (eds Bach, V. & Delle Site, L.) 301–318 (Springer, 2014).

    Google Scholar 

  61. Calabrese, P. & Cardy, J. Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 2005, P04010 (2005).

    Article  MathSciNet  Google Scholar 

  62. Cheneau, M. et al. Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012).

    Article  ADS  Google Scholar 

  63. Hastings, M. B. An area law for one-dimensional quantum systems. J. Stat. Mech. 2007, P08024 (2007).

    MathSciNet  Google Scholar 

  64. Eisert, J., Cramer, M. & Plenio, M. B. Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Eisert, J. & Osborne, T. J. General entanglement scaling laws from time evolution. Phys. Rev. Lett. 97, 150404 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Schuch, N., Wolf, M. M., Vollbrecht, K. G. H. & Cirac, J. I. On entropy growth and the hardness of simulating time evolution. New J. Phys. 10, 033032 (2008).

    Article  ADS  Google Scholar 

  67. Orus, R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Bañuls, M. C., Hastings, M. B., Verstraete, F. & Cirac, J. I. Matrix product states for dynamical simulation of infinite chains. Phys. Rev. Lett. 102, 240603 (2009).

    Article  ADS  Google Scholar 

  69. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Troyer, M., Alet, F., Trebst, S. & Wessel, S. Non-local updates for quantum Monte Carlo simulations. AIP Conf. Proc. 690, 156–169 (2003).

    Article  ADS  Google Scholar 

  71. Aoki, H. et al. Non-equilibrium dynamical mean-field theory and its applications. Rev. Mod. Phys. 86, 779–837 (2014).

    Article  ADS  Google Scholar 

  72. Carleo, G., Becca, F., Schiró, M. & Fabrizio, M. Localisation and glassy dynamics of many-body quantum systems. Sci. Rep. 2, 243 (2012).

    Article  ADS  Google Scholar 

  73. Nagaj, D. Fast universal quantum computation with railroad-switch local Hamiltonians. J. Math. Phys. 51, 062201 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014).

    Article  ADS  Google Scholar 

  75. Langer, S., Heidrich-Meisner, F., Gemmer, J., McCulloch, I. P. & Schollwöck, U. Real-time study of diffusive and ballistic transport in spin- chains using the adaptive time-dependent density matrix renormalization group method. Phys. Rev. B 79, 214409 (2009).

    Article  ADS  Google Scholar 

  76. Schneider, U. et al. Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultra-cold atoms. Nature Phys. 8, 213–218 (2012).

    Article  ADS  Google Scholar 

  77. Ronzheimer, J. P. et al. Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions. Phys. Rev. Lett. 110, 205301 (2013).

    Article  ADS  Google Scholar 

  78. Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Entropy scaling and simulability by matrix product states. Phys. Rev. Lett. 100, 030504 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  80. Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62, 24–29 (August, 2009).

    Article  Google Scholar 

  81. Stolz, G. in Entropy and the Quantum II Vol. 552 (eds Sims, R. & Ueltschi, D.) (Am. Math. Soc., 2011).

    Google Scholar 

  82. Burrell, C. K. & Osborne, T. J. Bounds on information propagation in disordered quantum spin chains. Phys. Rev. Lett. 99, 167201 (2007).

    Article  ADS  Google Scholar 

  83. Hamza, E., Sims, R. & Stolz, G. Dynamical localization in disordered quantum spin systems. Commun. Math. Phys. 315, 215–239 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Basko, D., Aleiner, I. & Altshuler, B. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    Article  ADS  MATH  Google Scholar 

  85. Aleiner, I. L., Altshuler, B. L. & Shlyapnikov, G. V. A finite-temperature phase transition for disordered weakly interacting bosons in one dimension. Nature Phys. 6, 900–904 (2010).

    ADS  Google Scholar 

  86. Nandkishore, R. & Huse, D. A. Many body localization and thermalization in quantum statistical mechanics. Preprint at http://arXiv.org/abs/1404.0686 (2014).

  87. Bauer, B. & Nayak, C. Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech. 2013, P09005 (2013).

    Article  MathSciNet  Google Scholar 

  88. Bardarson, J. H., Pollmann, F. & Moore, J. E. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202 (2012).

    Article  ADS  Google Scholar 

  89. Polkovnikov, A. & Gritsev, V. Breakdown of the adiabatic limit in low-dimensional gapless systems. Nature Phys. 4, 477–481 (2008).

    Article  ADS  Google Scholar 

  90. Ruutu, V. M. H. et al. Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation. Nature 382, 334–336 (1996).

    Article  ADS  Google Scholar 

  91. Ulm, S. et al. Observation of the Kibble–Zurek scaling law for defect formation in ion crystals. Nature Commun. 4, 2290 (2013).

    Article  Google Scholar 

  92. Pyka, K. et al. Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals. Nature Commun. 4, 2291 (2013).

    Article  Google Scholar 

  93. Chen, D., White, M., Borries, C. & DeMarco, B. Quantum quench of an atomic Mott insulator. Phys. Rev. Lett. 106, 235304 (2011).

    Article  ADS  Google Scholar 

  94. Bernier, J-S., Poletti, D., Barmettler, P., Roux, G. & Kollath, C. Slow quench dynamics of Mott-insulating regions in a trapped Bose gas. Phys. Rev. A 85, 033641 (2012).

    Article  ADS  Google Scholar 

  95. Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nature Phys. 8, 264–266 (2012).

    Article  ADS  Google Scholar 

  96. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    Article  ADS  Google Scholar 

  97. Lewenstein, M. et al. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).

    Article  ADS  Google Scholar 

  98. Meinert, F. et al. Quantum quench in an atomic one-dimensional Ising chain. Phys. Rev. Lett. 111, 053003 (2013).

    Article  ADS  Google Scholar 

  99. Trotzky, S. et al. Suppression of the critical temperature for superfluidity near the Mott transition. Nature Phys. 6, 998–1004 (2010).

    Article  ADS  Google Scholar 

  100. Esslinger, T. Fermi–Hubbard physics with atoms in an optical lattice. Ann. Rev. Condens. Matter Phys. 1, 129–152 (2010).

    Article  ADS  Google Scholar 

  101. Pertot, D. et al. Relaxation dynamics of a Fermi gas in an optical superlattice. Phys. Rev. Lett. 113, 170403 (2014).

    Article  ADS  Google Scholar 

  102. Zohar, E., Cirac, J. I. & Reznik, B. Cold-atom quantum simulator for SU(2) Yang–Mills lattice gauge theory. Phys. Rev. Lett. 110, 125304 (2013).

    Article  ADS  Google Scholar 

  103. Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton’s cradle. Nature 440, 900–903 (2006).

    Article  ADS  Google Scholar 

  104. Hofferberth, S., Lesanovsky, I., Fischer, B., Schumm, T. & Schmiedmayer, J. Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449, 324–327 (2007).

    Article  ADS  Google Scholar 

  105. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).

    Article  ADS  Google Scholar 

  106. Islam, R. et al. Onset of a quantum phase transition with a trapped ion quantum simulator. Nature Commun. 2, 377 (2011).

    Article  Google Scholar 

  107. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).

    Article  ADS  Google Scholar 

  108. Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).

    Article  ADS  Google Scholar 

  109. Hauke, P., Cucchietti, F. M., Tagliacozzo, L., Deutsch, I. & Lewenstein, M. Can one trust quantum simulators? Rep. Prog. Phys. 75, 082401 (2012).

    Article  ADS  Google Scholar 

  110. Matti Maricq, M. Application of average Hamiltonian theory to the NMR of solids. Phys. Rev. B 25, 6622–6632 (1982).

    Article  ADS  Google Scholar 

  111. Arimondo, E., Ciampini, D., Eckardt, A., Holthaus, M. & Morsch, O. Kilohertz-driven Bose–Einstein condensates in optical lattices. Adv. At. Mol. Opt. Phys. 61, 515–547 (2012).

    Article  ADS  Google Scholar 

  112. Goldman, N. & Dalibard, J. Periodically-driven quantum systems: Effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014).

    Google Scholar 

  113. Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

    Article  ADS  Google Scholar 

  114. Jotzu, G. et al. Experimental realisation of the topological Haldane model. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  115. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Preprint at http://arXiv.org/abs/1407.4205 (2014).

  116. Struck, J., Simonet, J. & Sengstock, K. Spin–orbit coupling in periodically driven optical lattices. Phys. Rev. A 90, 031601 (2014).

    Article  ADS  Google Scholar 

  117. Goldman, N. et al. Direct imaging of topological edge states in cold-atom systems. Proc. Natl Acad. Sci. USA 110, 6736–6741 (2013).

    Article  ADS  Google Scholar 

  118. Lazarides, A., Das, A. & Moessner, R. Periodic thermodynamics of isolated quantum systems. Phys. Rev. Lett. 112, 150401 (2014).

    Article  ADS  Google Scholar 

  119. Endres, M. et al. Single-site- and single-atom-resolved measurement of correlation functions. Science 334, 200–203 (2011).

    Article  ADS  Google Scholar 

  120. Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    Article  ADS  Google Scholar 

  121. Martín-Martínez, E., Fuentes, I. & Mann, R. B. Using Berry’s phase to detect the Unruh effect at lower accelerations. Phys. Rev. Lett. 107, 131301 (2011).

    Article  ADS  Google Scholar 

  122. Agarwal, K. et al. Chiral prethermalization in supersonically split condensates. Phys. Rev. Lett. 113, 190401 (2014).

    Article  ADS  Google Scholar 

  123. Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553–601 (2013).

    Article  ADS  Google Scholar 

  124. Linden, N., Popescu, S. & Skrzypczyk, P. How small can thermal machines be? the smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010).

    Article  ADS  Google Scholar 

  125. Gallego, R., Riera, A. & Eisert, J. Correlated thermal machines in the micro-world. New J. Phys. 16, 125009 (2014).

    Article  ADS  Google Scholar 

  126. Hubeny, V. E. & Rangamani, M. A holographic view on physics out of equilibrium. Adv. High Energy Phys. 2010, 297916 (2010).

    Article  MATH  Google Scholar 

  127. Kliesch, M., Gogolin, C., Kastoryano, M. J., Riera, A. & Eisert, J. Locality of temperature. Phys. Rev. X 4, 031019 (2014).

    Google Scholar 

  128. Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).

    Article  ADS  Google Scholar 

  129. Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

    Article  ADS  Google Scholar 

  130. Barontini, G. et al. Controlling the dynamics of an open many-body quantum system with localized dissipation. Phys. Rev. Lett. 110, 035302 (2013).

    Article  ADS  Google Scholar 

  131. Diehl, S., Rico, E., Baranov, M. A. & Zoller, P. Topology by dissipation in atomic quantum wires. Nature Phys. 7, 971–977 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank many colleagues for numerous discussions over the years, as well as E. Bergholtz, E. T. Campbell, A. del Campo, G. Carleo, J-S. Caux, F. Essler, T. Farrelly, M. Giuseppe, U. R. Fischer, M. Rigol, L. F. Santos, G. Takacs, R. Moessner and V. I. Yukalov for comments on the manuscript, and the EU (RAQUEL, SIQS, COST, AQuS), the ERC, the BMBF and the Studienstiftung des Deutschen Volkes for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Eisert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nature Phys 11, 124–130 (2015). https://doi.org/10.1038/nphys3215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing