Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical control of optical emitter relaxation pathways enabled by graphene


Controlling the energy flow processes and the associated energy relaxation rates of a light emitter is of fundamental interest and has many applications in the fields of quantum optics, photovoltaics, photodetection, biosensing and light emission. Advanced dielectric, semiconductor and metallic systems have been developed to tailor the interaction between an emitter and its environment. However, active control of the energy flow from an emitter into optical, electronic or plasmonic excitations has remained challenging. Here, we demonstrate in situ electrical control of the relaxation pathways of excited erbium ions, which emit light at the technologically relevant telecommunication wavelength of 1.5 μm. By placing the erbium at a few nanometres distance from graphene, we modify the relaxation rate by more than a factor of three, and control whether the emitter decays into electron–hole pairs, emitted photons or graphene near-infrared plasmons, confined to <15 nm from the graphene sheet. These capabilities to dictate optical energy transfer processes through electrical control of the local density of optical states constitute a new paradigm for active (quantum) photonics and can be applied using any combination of light emitters and two-dimensional materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Concept and device for electrically controllable energy relaxation pathways.
Figure 2: Electrically controlling spontaneous emission.
Figure 3: Comparison of experiment and theory.
Figure 4: Strong field confinement: plasmon launching at 1.5 μm.


  1. 1

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Article  Google Scholar 

  2. 2

    Joulain, K., Carminati, R., Mulet, J-P. & Greffet, J-J. Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B. 68, 245405 (2003).

    ADS  Article  Google Scholar 

  3. 3

    Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  4. 4

    Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    ADS  Article  Google Scholar 

  5. 5

    Raimond, J. M., Brune, M. & Haroche, S. Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    ADS  Article  Google Scholar 

  7. 7

    Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    ADS  Article  Google Scholar 

  8. 8

    Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    ADS  Article  Google Scholar 

  10. 10

    Novotny, L. & van Hulst, N. F. Antennas for light. Nature Photon. 5, 83–90 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Coffa, A., Franzò, & Priolo, F. High efficiency and fast modulation of Er-doped light emitting Si diodes. Appl. Phys. Lett. 69, 2077–2079 (1996).

    ADS  Article  Google Scholar 

  12. 12

    Laucht, A. et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New. J. Phys. 11, 123034 (2009).

    Article  Google Scholar 

  13. 13

    Polman, A. Erbium implanted thin film photonic materials. J. Appl. Phys. 82, 1–39 (1997).

    ADS  Article  Google Scholar 

  14. 14

    Snoeks, E., Lagendijk, A. & Polman, A. Measuring and modifying the spontaneous emission rate of erbium near an interface. Phys. Rev. Lett. 74, 2459–2462 (1995).

    ADS  Article  Google Scholar 

  15. 15

    Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    ADS  Article  Google Scholar 

  16. 16

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    ADS  Article  Google Scholar 

  18. 18

    Achermann, M. et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642–646 (2004).

    ADS  Article  Google Scholar 

  19. 19

    Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Swathi, R. & Sebastian, K. J. Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 129, 054703 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Gomez-Santos, G. & Stauber, T. Fluorescence quenching in graphene: A fundamental ruler and evidence for transverse plasmons. Phys. Rev. B 84, 165438 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Velizhanin, K. A. & Shahbazyan, T. V. Long-range plasmon-assisted energy transfer over doped graphene. Phys. Rev. B 86, 245432 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Polini, M. et al. Plasmons and the spectral function of graphene. Phys. Rev. B 77, 081411(R) (2008).

    ADS  Article  Google Scholar 

  24. 24

    Jablan, M., Buljan, H. & Soljaćić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    ADS  Article  Google Scholar 

  25. 25

    Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon. 7, 394–399 (2013).

    ADS  Article  Google Scholar 

  29. 29

    Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    ADS  Article  Google Scholar 

  30. 30

    Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    ADS  Article  Google Scholar 

  31. 31

    Fang, Z. et al. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388–2395 (2013).

    Article  Google Scholar 

  32. 32

    Brar, V. W., Jang, M. S., Sherrott, M., Lopez, J. J. & Atwater, H. A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

    ADS  Article  Google Scholar 

  33. 33

    Nikitin, A. Yu., Guinea, F., García-Vidal, F. J. & Martin-Moreno, L. Fields radiated by a nanoemitter in a graphene sheet. Phys. Rev. B 84, 195446 (2011).

    ADS  Article  Google Scholar 

  34. 34

    Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    ADS  Article  Google Scholar 

  35. 35

    Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

    Article  Google Scholar 

  36. 36

    Treossi, E. et al. High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J. Am. Chem. Soc. 131, 15576–15577 (2009).

    Article  Google Scholar 

  37. 37

    Chen, Z., Berciaud, S., Nuckolls, C., Heinz, T. F. & Brus, L. E. Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 4, 2964–2968 (2010).

    Article  Google Scholar 

  38. 38

    Gaudreau, L. et al. Universal distance-scaling of nonradiative energy transfer to graphene. Nano Lett. 13, 2030–2035 (2013).

    ADS  Article  Google Scholar 

  39. 39

    Blanco, L. A. & García de Abajo, F. J. Spontaneous light emission in complex nanostructures. Phys. Rev. B 69, 205414 (2004).

    ADS  Article  Google Scholar 

  40. 40

    Li, D. et al. Quantifying and controlling the magnetic dipole contribution to 1.5 μm light emission in erbium-doped yttrium oxide. Phys. Rev. B 89, 161409(R) (2014).

    ADS  Article  Google Scholar 

  41. 41

    Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    ADS  Article  Google Scholar 

  42. 42

    Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

    ADS  Article  Google Scholar 

  43. 43

    Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    ADS  Article  Google Scholar 

  44. 44

    Brenneis, A. et al. Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene. Preprint at (2014)

  45. 45

    Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–95 (2013).

    ADS  Article  Google Scholar 

Download references


K.J.T. thanks NWO for a Rubicon fellowship. F.H.L.K. acknowledges support by the Fundacio Cellex Barcelona, the ERC Career integration grant 294056 (GRANOP), the ERC starting grant 307806 (CarbonLight) and support by the E.C. under Graphene Flagship (contract no. CNECT-ICT-604391). F.J.G.d.A. acknowledges support from the Graphene Flagship CNECT-ICT-604391 and FP7-ICT-2013-613024-GRASP. The work at MIT has been supported by AFOSR grant number FA9550-11-1-0225, a Packard Fellowship, and the MISTI-Spain program. This work made use of the Materials Research Science and Engineering Center Shared Experimental Facilities supported by the National Science Foundation (NSF; award no. DMR-0819762) and of Harvard’s Center for Nanoscale Systems, supported by the NSF (grant ECS-0335765). P.G. thanks ANR project RAMACO (No. 12-BS08-0015-01).

Author information




F.H.L.K., P.J-H., F.J.G.d.A., H.d.R. and K.J.T. conceived the experiment. K.J.T., L.O., M.B., S.C. and L.G. carried out the experiments. K.J.T., L.O., F.J.G.d.A., P.J-H. and F.H.L.K. performed the data analysis. A.F., B.K., T.C., A.C., A.P., A.Z. and P.G. provided materials. G.N., M.B., L.O., S.N. and Q.M. fabricated the samples. F.J.G.d.A. developed the theoretical models. K.J.T., F.H.L.K., P.J-H. and F.J.G.d.A. wrote the manuscript with the participation of all authors.

Corresponding author

Correspondence to F. H. L. Koppens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 625 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tielrooij, K., Orona, L., Ferrier, A. et al. Electrical control of optical emitter relaxation pathways enabled by graphene. Nature Phys 11, 281–287 (2015).

Download citation

Further reading


Quick links