Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-accelerating Dirac particles and prolonging the lifetime of relativistic fermions

Abstract

The Aharonov–Bohm effect predicts that two parts of the electron wavefunction can accumulate a phase difference even when they are confined to a region in space with zero electromagnetic field. Here we show that engineering the wavefunction of electrons, as accelerating shape-invariant solutions of the potential-free Dirac equation, fundamentally acts as a force and the electrons accumulate an Aharonov–Bohm-type phase—which is equivalent to a change in the proper time and is related to the twin-paradox gedanken experiment. This implies that fundamental relativistic effects such as length contraction and time dilation can be engineered by properly tailoring the initial conditions. As an example, we suggest the possibility of extending the lifetime of decaying particles, such as an unstable hydrogen isotope, or altering other decay processes. We find these shape-preserving Dirac wavefunctions to be part of a family of accelerating quantum particles, which includes massive/massless fermions/bosons of any spin.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Accelerating Dirac particles.
Figure 2: The ‘twin-paradox’ gedanken experiment.
Figure 3: Extending the lifetime of an unstable particle through self-acceleration.

References

  1. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    ADS  MathSciNet  Article  Google Scholar 

  2. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  3. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    ADS  Article  Google Scholar 

  4. Fang, K., Yu, Z. & Fan, S. Experimental demonstration of a photonic Aharonov–Bohm effect at radio frequencies. Phys. Rev. B 87, 060301 (2013).

    ADS  Article  Google Scholar 

  5. Li, E., Eggleton, B. J., Fang, K. & Fan, S. Photonic Aharonov–Bohm effect in photon–phonon interactions. Nature Commun. 5, 3225 (2014).

    ADS  Article  Google Scholar 

  6. Anandan, J. & Aharonov, Y. Geometric quantum phase and angles. Phys. Rev. D 38, 1863 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  7. Hohensee, M. A., Estey, B., Hamilton, P., Zeilinger, A. & Müller, H. Force-free gravitational redshift: Proposed gravitational Aharonov–Bohm experiment. Phys. Rev. Lett. 108, 230404 (2012).

    ADS  Article  Google Scholar 

  8. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  Article  Google Scholar 

  9. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    ADS  Article  Google Scholar 

  10. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    ADS  Article  Google Scholar 

  11. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Article  Google Scholar 

  12. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nature Photon. 7, 153–158 (2013).

    ADS  Article  Google Scholar 

  13. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nature Photon. 7, 1001–1005 (2013).

    ADS  Article  Google Scholar 

  14. Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    ADS  Article  Google Scholar 

  15. Aidelsburger, M. et al. Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011).

    ADS  Article  Google Scholar 

  16. Jimenez-Garcia, K. et al. Peierls substitution in an engineered lattice potential. Phys. Rev. Lett. 108, 225303 (2012).

    ADS  Article  Google Scholar 

  17. Struck, J. et al. Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett. 108, 225304 (2012).

    ADS  Article  Google Scholar 

  18. Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928).

    ADS  Article  Google Scholar 

  19. Geim, A. & Novoselov, K. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    ADS  Article  Google Scholar 

  20. Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

    ADS  Article  Google Scholar 

  21. Salger, T., Grossert, C., Kling, S. & Weitz, M. Klein tunneling of a quasirelativistic Bose–Einstein condensate in an optical lattice. Phys. Rev. Lett. 107, 240401 (2011).

    ADS  Article  Google Scholar 

  22. Windpassinger, P. & Sengstock, K. Engineering novel optical lattices. Rep. Prog. Phys. 76, 086401 (2013).

    ADS  Article  Google Scholar 

  23. Polini, M., Guinea, F., Lewenstein, M., Manoharan, H. C. & Pellegrini, V. Artificial honeycomb lattices for electrons, atoms and photons. Nature Nanotech. 8, 625–633 (2013).

    ADS  Article  Google Scholar 

  24. Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    ADS  Article  Google Scholar 

  25. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    ADS  Article  Google Scholar 

  26. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B 74, 075103 (2006).

    ADS  Article  Google Scholar 

  27. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunneling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    ADS  Article  Google Scholar 

  28. McCann, E. et al. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 97, 146805 (2006).

    ADS  Article  Google Scholar 

  29. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nature Phys. 9, 795–800 (2013).

    ADS  Article  Google Scholar 

  30. Segev, M., Solomon, R. & Yariv, A. Manifestation of Berry’s phase in image-bearing optical beams. Phys. Rev. Lett. 69, 590 (1992).

    ADS  MathSciNet  Article  Google Scholar 

  31. Siviloglou, G. A., Broky, J., Dogariu, A. & Christodoulides, D. N. Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007).

    ADS  Article  Google Scholar 

  32. Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nature Photon. 2, 675–678 (2008).

    ADS  Article  Google Scholar 

  33. Polynkin, P., Kolesik, M., Moloney, J. V., Siviloglou, G. A. & Christodoulides, D. N. Curved plasma channel generation using ultraintense Airy beams. Science 324, 229–232 (2009).

    ADS  Article  Google Scholar 

  34. Chong, A., Renninger, W. H., Christodoulides, D. N. & Wise, F. W. Airy–Bessel wave packets as versatile linear light bullets. Nature Photon. 4, 103–106 (2010).

    ADS  Article  Google Scholar 

  35. Kaminer, I., Segev, M. & Christodoulides, D. N. Self-accelerating self-trapped optical beams. Phys. Rev. Lett. 106, 213903 (2011).

    ADS  Article  Google Scholar 

  36. Lotti, A. et al. Stationary nonlinear Airy beams. Phys. Rev. A 84, 021807 (2011).

    ADS  Article  Google Scholar 

  37. Dolev, I., Kaminer, I., Shapira, A., Segev, M. & Arie, A. Experimental observation of self-accelerating beams in quadratic nonlinear media. Phys. Rev. Lett. 108, 113903 (2012).

    ADS  Article  Google Scholar 

  38. Kaminer, I., Bekenstein, R., Nemirovsky, J. & Segev, M. Nondiffracting accelerating wave packets of Maxwell’s equations. Phys. Rev. Lett. 108, 163901 (2012).

    ADS  Article  Google Scholar 

  39. Bekenstein, R., Nemirovsky, J., Kaminer, I. & Segev, M. Shape-preserving accelerating electromagnetic wave packets in curved space. Phys. Rev. X 4, 011038 (2014).

    Google Scholar 

  40. Voloch-Bloch, N., Lereah, Y., Lilach, Y., Gover, A. & Arie, A. Generation of electron Airy beams. Nature 494, 331–335 (2013).

    ADS  Article  Google Scholar 

  41. Berry, M. V. & Balazs, N. L. Nonspreading wave packets. Am. J. Phys. 47, 264–267 (1979).

    ADS  Article  Google Scholar 

  42. Einstein, A. On the electrodynamics of moving bodies. Ann. Phys. Lpz. 17, 891–921 (1905).

    ADS  Article  Google Scholar 

  43. Batelaan, H. & Tonomura, A. The Aharonov–Bohm effects: Variations on a subtle theme. Phys. Today 62, 38–43 (September, 2009).

    Article  Google Scholar 

  44. Cohen-Tannoudji, C., Diu, B. & Laloe, L. Quantum Mechanics Vol. 1 (Wiley-VCH, 1991).

    MATH  Google Scholar 

  45. Sepkhanov, R. A., Bazaliy, Ya. B. & Beenakker, C. W. J. Extremal transmission at the Dirac point of a photonic band structure. Phys. Rev. A 75, 6 (2007).

    Article  Google Scholar 

  46. Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    ADS  Article  Google Scholar 

  47. Berry, M. V., Jeffrey, M. R. & Lunney, J. G. Conical diffraction: Observations and theory. Proc. R. Soc. Lond. A 462, 1629–1642 (2006).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank R. L. Jaffe for valuable discussions that considerably contributed to our work. This research was funded by the ICore Excellence Center ‘Circle of Light’, by the Binational USA–Israel Science Foundation BSF, and by a Marie Curie Grant no 328853–MC–BSiCS.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this work.

Corresponding author

Correspondence to Ido Kaminer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1275 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaminer, I., Nemirovsky, J., Rechtsman, M. et al. Self-accelerating Dirac particles and prolonging the lifetime of relativistic fermions. Nature Phys 11, 261–267 (2015). https://doi.org/10.1038/nphys3196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3196

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing