A new frontier for superconductivity

Monolayer films of iron selenide deposited on strontium titanate display signatures of superconductivity at temperatures as high as 109 K. These recent developments may herald a flurry of exciting findings concerning superconductivity at interfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: a,b, The critical temperature (TC) of superconducting materials discussed in the text.
Figure 2: a, A ball-and-stick model of an FeSe/SrTiO3 heterostructure.
Figure 3: a, A sketch of the in-situ probe for four-point-contact resistance measurements used in ref. 10.

References

  1. 1

    Canfield, P. C. Nature Mater. 10, 259–261 (2011).

    ADS  Article  Google Scholar 

  2. 2

    Gurevich, A. Nature Mater. 10, 255–259 (2011).

    ADS  Article  Google Scholar 

  3. 3

    Wu, G. et al. J. Phys. Condens. Matter 21, 142203 (2009).

    ADS  Article  Google Scholar 

  4. 4

    Ginzburg, V. L. Phys. Lett. 13, 101–102 (1964).

    ADS  Article  Google Scholar 

  5. 5

    Bozovic, I. et al. Phys. Rev. Lett. 89, 107001 (2002).

    ADS  Article  Google Scholar 

  6. 6

    Gozar, A. et al. Nature 455, 782–785 (2008).

    ADS  Article  Google Scholar 

  7. 7

    Logvenov, G., Gozar, A. & Bozovic, I. Science 326, 699–702 (2009).

    ADS  Article  Google Scholar 

  8. 8

    Zhou, H. et al. Proc. Natl Acad. Sci. 107, 8103–8107 (2010).

    ADS  Article  Google Scholar 

  9. 9

    Reyren, N. et al. Science 317, 1196–1199 (2007).

    ADS  Article  Google Scholar 

  10. 10

    Ge, J-F. et al. Nature Mater. http://dx.doi.org/10.1038/nmat4153 (2014).

  11. 11

    Wang, Q-Y. et al. Chinese Phys. Lett. 29, 037402 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Zhang, W-H. et al. Chinese Phys. Lett. 31, 017401 (2014).

    ADS  Article  Google Scholar 

  13. 13

    Liu, D. et al. Nature Commun. 3, 931 (2012).

    ADS  Article  Google Scholar 

  14. 14

    He, S. et al. Nature Mater. 12, 605–610 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Tan, S. et al. Nature Mater. 12, 634–640 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Peng, R. et al. Phys. Rev. Lett. 112, 107001 (2014).

    ADS  Article  Google Scholar 

  17. 17

    Peng, R. et al. Nature Commun. 5, 5044 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Lee, J. J. et al. Nature 515, 245–248 (2014).

    ADS  Article  Google Scholar 

  19. 19

    Sun, Y. et al. Sci. Rep. 4, 6040 (2014).

    Article  Google Scholar 

  20. 20

    Butko, V. et al. Adv. Mater. 21, 3644–3688 (2009).

    Article  Google Scholar 

  21. 21

    Xiang, Y-Y. et al. Phys. Rev. B 86, 134508 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Coh, S., Cohen, M. L. & Louie, S. G. Preprint at http://arxiv.org/abs/1407.5657 (2014).

  23. 23

    Okabe, H., Takeshita, N., Horigane, K., Muranaka, T. & Akimitsu, J. Phys. Rev. B 81, 205119 (2010).

    ADS  Article  Google Scholar 

  24. 24

    Borisenko, S. Nature Mater. 12, 600–601 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

I.B. is supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. C.A. acknowledges support from NSF under NSF-DMR MRSEC 1119826.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bozovic, I., Ahn, C. A new frontier for superconductivity. Nature Phys 10, 892–895 (2014). https://doi.org/10.1038/nphys3177

Download citation

Further reading