Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2

Abstract

Spin and charge are inseparable traits of an electron, but in one-dimensional solids, theory predicts their separation into collective modes—as independent excitation quanta (or particles) called spinons and holons. Experimentalists have long sought to verify this effect. Angle-resolved photoemission (ARPES) should provide the most direct evidence of spin–charge separation, as the single quasiparticle peak splits into a spinon–holon two-peak-like structure. Despite extensive ARPES experiments, the unambiguous observation of the two-peak structure has remained elusive. Here we report ARPES data from SrCuO2, made possible by recent technological developments, that unequivocally show the spinon–holon two-peak structure and their distinct dispersions. The spinon and holon branches are found to have energy scales of 0.43 and 1.3 eV, respectively, which are in quantitative agreement with the theoretical predictions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic view of an electron-removal excitation spectrum from a 1D system with antiferromagnetic correlation.
Figure 2: Crystal structure, cleavage plane and relevant orbitals.
Figure 3: EDCs and dispersions.
Figure 4: Colour-scale plot of ARPES data from SrCuO2.
Figure 5: Analysis of the k||=Γ spectral function.

References

  1. 1

    Tsui, D. C., Stormer, H. L. & Godard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    ADS  Article  Google Scholar 

  2. 2

    Anderson, P. W. & Zou, Z. “Normal” tunneling and “Normal” transport: Diagnostics for the resonating-valence-bond state. Phys. Rev. Lett. 60, 132–135 (1988).

    ADS  Article  Google Scholar 

  3. 3

    Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 58, 977–1116 (1995).

    ADS  Article  Google Scholar 

  4. 4

    Lieb, E. H. & Wu, F. Y. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20, 1445–1448 (1968).

    ADS  Article  Google Scholar 

  5. 5

    Gweon, G.-H. et al. ARPES lineshapes in FL and non-FL quasi-low-dimensional inorganic metals. J. Electron Spectrosc. Relat. Phenom. 117–118, 481–502 (2001).

    Article  Google Scholar 

  6. 6

    Voit, J. Spectral properties of nearly free and strongly correlated one-dimensional electrons. J. Electron Spectrosc. Relat. Phenom. 117–118, 469–480 (2001).

    Article  Google Scholar 

  7. 7

    Bockrath, M. et al. Single electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

    Article  Google Scholar 

  8. 8

    Auslaender, O. M. et al. Tunneling spectroscopy of the elementary excitations in a one-dimensional wire. Science 295, 825–828 (2002).

    ADS  Article  Google Scholar 

  9. 9

    Kim, C. et al. Observation of spin–charge separation in one-dimensional SrCuO2 . Phys. Rev. Lett. 77, 4054–4057 (1996).

    ADS  Article  Google Scholar 

  10. 10

    Kim, C. et al. Separation of spin and charge excitations in one-dimensional SrCuO2 . Phys. Rev. B 56, 15589–15595 (1997).

    ADS  Article  Google Scholar 

  11. 11

    Fujisawa, H. et al. Angle-resolved photoemission study of Sr2CuO3 . Phys. Rev. B 59, 7358–7361 (1999).

    ADS  Article  Google Scholar 

  12. 12

    Claessen, R. et al. Angle-resolved photoemission of quasi-one-dimensional metals: Evidence of luttinger liquid behavior. J. Electron Spectrosc. Relat. Phenom. 76, 121–126 (1995).

    Article  Google Scholar 

  13. 13

    Segovia, P., Purdie, D., Hengsberger, M. & Baer, Y. Observation of spin and charge collective modes in one-dimensional metallic chain. Nature 402, 504–507 (1999).

    ADS  Article  Google Scholar 

  14. 14

    Claessen, R. et al. Spectroscopic signature of spin–charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ. Phys. Rev. Lett. 88, 096402 (2002).

    ADS  Article  Google Scholar 

  15. 15

    Ito, T. et al. Temperature-dependent Luttinger surfaces. Phys. Rev. Lett. 95, 246402 (2005).

    ADS  Article  Google Scholar 

  16. 16

    Suga, S. et al. High-energy angle-resolved photoemission spectroscopy probing bulk correlated electronic states in quasi-one-dimensional V6O13 and SrCuO2 . Phys. Rev. B 70, 155106 (2004).

    ADS  Article  Google Scholar 

  17. 17

    Mozos, J.-L., Ordejon, P. & Canadell, E. First principles study of the blue bronze K0.3MoO3 . Phys. Rev. B 65, 233105 (2002).

    ADS  Article  Google Scholar 

  18. 18

    Losio, R. et al. Band splitting for Si(557): Is it spin–charge separation? Phys. Rev. Lett. 86, 4632–4635 (2001).

    ADS  Article  Google Scholar 

  19. 19

    Motoyama, N., Eisaki, H. & Uchida, S. Magnetic susceptibility of ideal spin 1/2 Heisenberg antiferromagnetic chain systems, Sr2CuO3 and SrCuO2 . Phys. Rev. Lett. 76, 3212–3215 (1996).

    ADS  Article  Google Scholar 

  20. 20

    Suzuura, H. Theoretical Study on Optical Properties of CuO Chains. PhD Thesis, Univ. Tokyo (1997).

  21. 21

    Zaliznyak, I. A. et al. Spinons in the strongly correlated copper oxide chains in SrCuO2 . Phys. Rev. Lett. 93, 087202 (2004).

    ADS  Article  Google Scholar 

  22. 22

    Popovic, Z. V. et al. Optical studies of gap, hopping energies, and the Anderson-Hubbard parameters in the zigzag-chain compound SrCuO2 . Phys. Rev. B 63, 165105 (2001).

    ADS  Article  Google Scholar 

  23. 23

    Kasaia, S. et al. Bulk electronic state of high-Tc cuprate La2−xSrxCuO4 observed by high-energy angle integrated and resolved photoemission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 144–147, 507–509 (2005).

    Article  Google Scholar 

  24. 24

    Ren, Y. & Anderson, P. W. Asymptotic correlation functions in one-dimensional Hubbard model with applications to high-Tc superconductivity. Phys. Rev. B 48, 16662–16672 (1993).

    ADS  Article  Google Scholar 

  25. 25

    Sorella, S. & Parola, A. One-hole Green function, momentum distribution and quasiparticle weight of the U to infinitiy 1D Hubbard model. J. Phys. Condens. Matter 4, 3589–3610 (1992).

    ADS  Article  Google Scholar 

  26. 26

    Hufner, S. Photoemission Spectroscopy (Springer, New York, 2003).

    Google Scholar 

  27. 27

    Perfetti, L. et al. Mobile small polarons and the Peierls transition in the quasi-one-dimensional conductor K0.3MoO3 . Phys. Rev. B 66, 075107 (2002).

    ADS  Article  Google Scholar 

  28. 28

    Dessau, D. et al. k-dependent electronic structure, a large “ghost” Fermi surface, and a pseudogap in a layered magnetoresistive oxide. Phys. Rev. Lett. 81, 192–195 (1998).

    ADS  Article  Google Scholar 

  29. 29

    Shen, K. M. et al. Missing quasiparticles and the chemical potential puzzle in the doping evolution of the cuprate superconductors. Phys. Rev. Lett. 93, 267002 (2004).

    ADS  Article  Google Scholar 

  30. 30

    Tsutsui, K., Tohyama, T. & Maekawa, S. Electron and phonon dynamics in copper oxides. Physica C 392–396, 199–202 (2003).

    ADS  Article  Google Scholar 

  31. 31

    Mishchenko, A. S. & Nagaosa, N. Electron-phonon coupling and a polaron in thet-J model: from weak to the strong coupling regime. Phys. Rev. Lett. 93, 036402 (2004).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported (in part) by the Korea Science and Engineering Foundation through the Center for Strongly Correlated Materials Research. Z.-X.S. acknowledges support from DOE contract DE-FG03-01ER45929-A001. ALS is operated by the DOE's Office of BES, Division of Materials Science, under Contract No. DE-AC03-76SF00098.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to B. J. Kim or C. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, B., Koh, H., Rotenberg, E. et al. Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2. Nature Phys 2, 397–401 (2006). https://doi.org/10.1038/nphys316

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing