Recent advances in nuclear physics through on-line isotope separation

Abstract

Nuclear physics is advancing rapidly at the precision frontier, where measurements of nuclear observables are challenging state-of-the-art nuclear models. A major contribution is associated with the increasing availability of accelerated beams of radioactive ions produced using the isotope separation on-line technique. These advances have come hand in hand with significant progress in the development of high-efficiency detector systems and improved target technologies which are invaluable in exploiting these beams to their full advantage. This article reviews some of the recent highlights in the field of nuclear structure profiting from these technological advances.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the technique of Coulomb excitation applied to determination of nuclear shape.
Figure 2: Schematic of a single-particle transfer reaction (specifically a (d,p) reaction) in inverse kinematics with radioactive beam.

References

  1. 1

    Wiescher, M., Käppeler, F. & Langanke, K. Critical reactions in contemporary nuclear astrophysics. Annu. Rev. Astron. Astrophys. 50, 165–210 (2012).

    ADS  Article  Google Scholar 

  2. 2

    Schatz, H. et al. rp-process nucleosynthesis at extreme temperature and density conditions. Phys. Rep. 294, 167–263 (1998).

    ADS  Article  Google Scholar 

  3. 3

    Epelbaum, E., Krebs, H., Lee, D. & Meissner, U-G. Ab initio calculation of the Hoyle state. Phys. Rev. Lett. 106, 192501 (2011).

    ADS  Article  Google Scholar 

  4. 4

    Bohr, Aa. & Mottelson, B. R. Nuclear Structure. Volume 1: Single-particle Models (World Scientific, 1998).

    Google Scholar 

  5. 5

    Bohr, Aa. & Mottelson, B. R. Nuclear Structure. Volume 2: Nuclear Deformation (World Scientific, 1998).

    Google Scholar 

  6. 6

    Rowe, D. J. & Wood, J. L. Fundamentals of Nuclear Models (World Scientific, 2010).

    Google Scholar 

  7. 7

    Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509–512 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Carroll, R. J. et al. Blurring the boundaries: Decays of multiparticle isomers at the proton drip line. Phys. Rev. Lett. 112, 092501 (2014).

    ADS  Article  Google Scholar 

  9. 9

    Hansen, P. G. in The SC: ISOLDE and Nuclear Structure Vol. 3 (ed. Krige, J.) 327–413 (North Holland, 1997).

    Google Scholar 

  10. 10

    Huyse, M. & Raabe, R. Radioactive ion beam physics at the Cyclotron Research Centre Louvain-la-Neuve. J. Phys. G 38, 024001 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Fedosseev, V. N., Kurdyravtsev, Yu. & Mishin, V. I. Resonance laser ionization of atoms for nuclear physics. Phys. Scr. 85, 058104 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Rothe, S. et al. Measurement of the first ionization potential of astatine by laser ionization spectroscopy. Nature Commun. 4, 1835 (2013).

    ADS  Article  Google Scholar 

  13. 13

    Benlliure, J. Recent highlights on fragmentation reactions. J. Phys. Conf. Ser. 312, 082001 (2011).

    Article  Google Scholar 

  14. 14

    Schwarz, S. et al. The NSCL cyclotron gas stopper—under construction. Nucl. Instrum. Methods B 317, 464–466 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Navin, A., de Oliviera Santos, F., Roussel-Chomaz, P. & Sorlin, O. Nuclear structure and reaction studies at SPIRAL. J. Phys. G 38, 024004 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Ball, G. C. et al. Physics with reaccelerated radioactive beams at TRIUMF-ISAC. J. Phys. G 38, 024003 (2011).

    ADS  Article  Google Scholar 

  17. 17

    Habs, D. et al. The REX-ISOLDE project. Hyperfine Interact. 129, 43–66 (2000).

    ADS  Article  Google Scholar 

  18. 18

    Van Duppen, P. & Riisager, K. Physics with REX-ISOLDE: From experiment to facility. J. Phys. G 38, 024005 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Göppert Mayer, M. Nuclear configurations in the spin-orbit coupling model. I. Empirical evidence. Phys. Rev. 78, 16–21 (1950).

    ADS  Article  Google Scholar 

  20. 20

    Möller, P., Nix, J. R., Myers, W. D. & Swiatecki, W. J. Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185–381 (1995).

    ADS  Article  Google Scholar 

  21. 21

    Takahara, S., Tajima, N. & Shimizu, Y. R. Nuclear prolate-shape dominance with the Woods–Saxon potential. Phys. Rev. C 86, 064323 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Stránský, P., Frank, A. & Bijker, R. On prolate shape dominance in nuclear deformation. J. Phys. Conf. Ser. 322, 012018 (2011).

    Article  Google Scholar 

  23. 23

    Heyde, K. & Wood, J. L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467–1521 (2011).

    ADS  Article  Google Scholar 

  24. 24

    Bender, M., Bonche, P. & Heenen, P-H. Shape coexistence in neutron-deficient Kr isotopes: Constraints on the single-particle spectrum of self-consistent mean-field models from collective excitations. Phys. Rev. C 74, 024312 (2006).

    ADS  Article  Google Scholar 

  25. 25

    Andreyev, A. N. et al. A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb. Nature 405, 430–433 (2000).

    ADS  Article  Google Scholar 

  26. 26

    Cheal, B. & Flanagan, K. T. Progress in laser spectroscopy at radioactive beam facilities. J. Phys. G 37, 113101 (2010).

    ADS  Article  Google Scholar 

  27. 27

    Cocolios, T. E. et al. Early onset of ground state deformation in neutron deficient polonium isotopes. Phys. Rev. Lett. 106, 052503 (2011).

    ADS  Article  Google Scholar 

  28. 28

    Gaffney, L. P. et al. Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in 184,186Hg and two-state mixing calculations. Phys. Rev. C 89, 024307 (2014).

    ADS  Article  Google Scholar 

  29. 29

    Alder, K., Bohr, A., Huus, T., Mottelson, B. & Winther, A. Study of nuclear structure by electromagnetic excitation with accelerated ions. Rev. Mod. Phys. 28, 432–542 (1956).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30

    Häusser, O. et al. Coulomb excitation of 28Si projectiles. Phys. Rev. Lett. 23, 320–323 (1969).

    ADS  Article  Google Scholar 

  31. 31

    Clement, E. et al. Shape coexistence in neutron-deficient krypton isotopes. Phys. Rev. C 75, 054313 (2007).

    ADS  Article  Google Scholar 

  32. 32

    Yao, J. M., Hagino, K., Li, Z. P., Meng, J. & Ring, P. Microscopic benchmark study of triaxiality in low-lying states of 76Kr. Phys. Rev. C 89, 054306 (2014).

    ADS  Article  Google Scholar 

  33. 33

    Hurst, A. M. et al. Measurement of the sign of the spectroscopic quadrupole moment for the 21+ state in 70Se: No evidence for oblate shape. Phys. Rev. Lett. 98, 072501 (2007).

    ADS  Article  Google Scholar 

  34. 34

    Ljungvall, J. et al. Shape coexistence in light Se isotopes: Evidence for oblate shapes. Phys. Rev. Lett. 100, 102502 (2008).

    ADS  Article  Google Scholar 

  35. 35

    Bree, N. et al. Shape coexistence in the neutron-deficient even-even 182−188Hg isotopes studied via Coulomb excitation. Phys. Rev. Lett. 112, 162701 (2014).

    ADS  Article  Google Scholar 

  36. 36

    Butler, P. A. & Nazarewicz, W. Intrinsic reflection asymmetry in atomic nuclei. Rev. Mod. Phys. 68, 349–421 (1996).

    ADS  Article  Google Scholar 

  37. 37

    Dobaczewski, J. & Engel, J. Nuclear time-reversal violation and the Schiff moment of 225Ra. Phys. Rev. Lett. 94, 232502 (2005).

    ADS  Article  Google Scholar 

  38. 38

    Gaffney, L. P. et al. Studies of pear-shaped nuclei using accelerated radioactive beams. Nature 497, 199–204 (2013).

    ADS  Article  Google Scholar 

  39. 39

    Savajols, H. et al. VAMOS: A variable mode high acceptance spectrometer for identifying reaction products induced by SPIRAL beams. Nucl. Instrum. Methods B 204, 146–153 (2003).

    ADS  Article  Google Scholar 

  40. 40

    Davids, B. S. & Davids, C. N. EMMA: A recoil mass spectrometer for ISAC-II at TRIUMF. Nucl. Instrum. Methods A 544, 565–576 (2005).

    ADS  Article  Google Scholar 

  41. 41

    Hinke, C. B. et al. Superallowed Gamow-Teller decay of the doubly magic nucleus 100Sn. Nature 486, 341–345 (2012).

    ADS  Article  Google Scholar 

  42. 42

    Jones, K. L. et al. The magic nature of 132Sn explored through the single-particle states of 133Sn. Nature 465, 454–457 (2010).

    ADS  Article  Google Scholar 

  43. 43

    Pain, S. D. et al. Development of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematics. Nucl. Instrum. Methods B 261, 1122–1127 (2007).

    ADS  Article  Google Scholar 

  44. 44

    Diget, C. A. et al. SHARC: Silicon highly-segmented array for reactions and Coulex used in conjunction with the TIGRESS γ-ray spectrometer. J. Instrum. 6, P02005 (2011).

    Article  Google Scholar 

  45. 45

    Bildstein, V. et al. T-REX. Eur. Phys. J. A 48, 85 (2012).

    ADS  Article  Google Scholar 

  46. 46

    Warr, N. et al. The MINIBALL spectrometer. Eur. Phys. J. A 49, 40 (2013).

    ADS  Article  Google Scholar 

  47. 47

    Wuosmaa, A. H. et al. A solenoidal spectrometer for reactions in inverse kinematics. Nucl. Instrum. Methods A 580, 1290–1300 (2007).

    ADS  Article  Google Scholar 

  48. 48

    Lighthall, J. C. et al. Commissioning of the HELIOS spectrometer. Nucl. Instrum. Methods A 622, 97–106 (2010).

    ADS  Article  Google Scholar 

  49. 49

    http://www.ganil-spiral2.eu/spiral2

  50. 50

    http://www.triumf.ca/ariel

  51. 51

    Herlert, A. & Kadi, Y. The HIE-ISOLDE Project. J. Phys. Conf. Ser. 312, 052010 (2010).

    Article  Google Scholar 

  52. 52

    Grieser, M. et al. Storage ring at HIE-ISOLDE. Eur. Phys. J. 207, 1–117 (2012).

    Google Scholar 

Download references

Acknowledgements

Discussions with L. Gaffney are gratefully acknowledged. E. Power is thanked for producing the figures. P. Davies, D. Gilks, J. Henderson and D. Montanari are thanked for their careful reading of the manuscript. W. Power is thanked for her advice on formatting the text for a non-specialist reader.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Gareth Jenkins.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jenkins, D. Recent advances in nuclear physics through on-line isotope separation. Nature Phys 10, 909–913 (2014). https://doi.org/10.1038/nphys3165

Download citation

Further reading