Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering

Abstract

The energy spectrum of common two-dimensional electron gases consists of a harmonic (that is, equidistant) ladder of Landau levels, thus preventing the possibility of optically addressing individual transitions. In graphene, however, owing to its non-harmonic spectrum, individual levels can be addressed selectively. Here, we report a time-resolved experiment directly pumping discrete Landau levels in graphene. Energetically degenerate Landau-level transitions from n = −1 to n = 0 and from n = 0 to n = 1 are distinguished by applying circularly polarized THz light. An analysis based on a microscopic theory shows that the zeroth Landau level is actually depleted by strong Auger scattering, even though it is optically pumped at the same time. The surprisingly strong electron–electron interaction responsible for this effect is directly evidenced through a sign reversal of the pump–probe signal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pump–probe spectroscopy on graphene with linearly polarized radiation.
Figure 2: Pump–probe spectroscopy on graphene with circularly polarized radiation.
Figure 3: Level occupation for pumping with circularly polarized radiation.

Similar content being viewed by others

References

  1. Drexler, C. et al. Magnetic quantum ratchet effect in graphene. Nature Nanotech. 8, 104–107 (2013).

    Article  ADS  Google Scholar 

  2. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article  ADS  Google Scholar 

  3. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).

    Article  ADS  Google Scholar 

  4. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  ADS  Google Scholar 

  5. Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).

    Article  ADS  Google Scholar 

  6. Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    Article  ADS  Google Scholar 

  7. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  8. Zhang, Y., Tan, J. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  9. Sadowski, M. L., Martinez, G., Potemski, M., Berger, C. & deHeer, W. A. Landau level spectroscopy of ultrathin graphene layers. Phys. Rev. Lett. 97, 266405 (2006).

    Article  ADS  Google Scholar 

  10. Plochocka, P. et al. High energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy. Phys. Rev. Lett. 100, 087401 (2008).

    Article  ADS  Google Scholar 

  11. Orlita, M. et al. Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008).

    Article  ADS  Google Scholar 

  12. Neugebauer, P., Orlita, M., Faugeras, C., Barra, A-L. & Potemski, M. How perfect can graphene be? Phys. Rev. Lett. 103, 136403 (2009).

    Article  ADS  Google Scholar 

  13. Crassee, I. et al. Giant Faraday rotation in single- and multilayer graphene. Nature Phys. 7, 48–51 (2011).

    Article  ADS  Google Scholar 

  14. Kawano, Y. Wide-band frequency tunable terahertz and infrared detection with graphene. Nanotechnology 24, 21404 (2013).

    Article  Google Scholar 

  15. Dawlaty, J. M., Shivaraman, S., Chandrashekhar, M., Rana, F. & Spencer, M. G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett. 92, 042116 (2008).

    Article  ADS  Google Scholar 

  16. Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008).

    Article  ADS  Google Scholar 

  17. Breusing, M. et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 83, 153410 (2011).

    Article  ADS  Google Scholar 

  18. Winnerl, S. et al. Carrier relaxation in epitaxial graphene photoexcited near the Dirac point. Phys. Rev. Lett. 107, 237401 (2011).

    Article  ADS  Google Scholar 

  19. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commun. 4, 1987 (2013).

    Article  ADS  Google Scholar 

  20. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, 248–252 (2013).

    Article  ADS  Google Scholar 

  21. Plochocka, P. et al. Slowing hot-carrier relaxation in graphene using a magnetic field. Phys. Rev. B 80, 245415 (2009).

    Article  ADS  Google Scholar 

  22. Foster, M. S. & Aleiner, I. L. Slow imbalance relaxation and thermoelectric transport in graphene. Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene. Phys. Rev. B 79, 085415 (2010).

    Article  ADS  Google Scholar 

  23. Otsuji, T. et al. Graphene-based devices in terahertz science and technology. J. Phys. D 45, 303001 (2012).

    Article  Google Scholar 

  24. Rana, F. Electron–hole generation and recombination rates for Coulomb scattering in graphene. Phys. Rev. B 76, 155431 (2007).

    Article  ADS  Google Scholar 

  25. Winzer, T., Knorr, A. & Malic, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).

    Article  ADS  Google Scholar 

  26. Winzer, T. & Malic, E. Impact of Auger processes on carrier dynamics in graphene. Phys. Rev. B 85, 241404 (2012).

    Article  ADS  Google Scholar 

  27. Gierz, I. et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nature Mater. 12, 1119–1124 (2013).

    Article  ADS  Google Scholar 

  28. Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).

    Article  ADS  Google Scholar 

  29. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  ADS  Google Scholar 

  30. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  31. Sun, D. et al. Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene. Phys. Rev. Lett. 104, 136802 (2010).

    Article  ADS  Google Scholar 

  32. Winnerl, S. et al. Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: Relaxation dynamics and saturation behaviour. J. Phys. Condens. Matter 25, 054202 (2013).

    Article  ADS  Google Scholar 

  33. Witowski, A. M. et al. Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene. Phys. Rev. B 82, 165305 (2010).

    Article  ADS  Google Scholar 

  34. Orlita, M. et al. Classical to quantum crossover of the cyclotron resonance in graphene: A study of the strength of intraband absorption. New J. Phys. 14, 095008 (2012).

    Article  ADS  Google Scholar 

  35. Wang, Z-W. et al. The temperature dependence of optical phonon scattering in graphene under strong magnetic field. J. Phys. Soc. Jpn 82, 094606 (2013).

    Article  ADS  Google Scholar 

  36. Wendler, F., Knorr, A. & Malic, E. Resonant carrier-phonon scattering in graphene under Landau quantization. Appl. Phys. Lett. 103, 253117 (2013).

    Article  ADS  Google Scholar 

  37. Goerbig, M. O. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–1243 (2011).

    Article  ADS  Google Scholar 

  38. Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).

    Book  Google Scholar 

  39. Malic, E. & Knorr, A. Graphene and Carbon Nanotubes – Ultrafast Relaxation Dynamics and Optics (Wiley-VCH, 2013).

    Book  Google Scholar 

  40. Malic, E., Winzer, T., Bobkin, E. & Knorr, A. Microscopic theory of absorption and ultrafast many-particle kinetics in graphene. Phys. Rev. B 84, 205406 (2011).

    Article  ADS  Google Scholar 

  41. Graham, M. W., Shi, S. F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nature Phys. 9, 103–108 (2013).

    Article  ADS  Google Scholar 

  42. Betz, A. C. et al. Supercollision cooling in undoped graphene. Nature Phys. 9, 109–112 (2013).

    Article  ADS  Google Scholar 

  43. Roldán, R., Goerbig, M. O. & Fuchs, J-N. The magnetic field particle-hole excitation spectrum in doped graphene and in a standard two-dimensional electron gas. Semicond. Sci. Technol. 25, 034005 (2010).

    Article  ADS  Google Scholar 

  44. Ando, T. & Uemura, Y. Theory of quantum transport in a two-dimensional electron system under magnetic fields. I. Characteristics of level broadening and transport under strong fields. J. Phys. Soc. Jpn 36, 959–967 (1974).

    Article  ADS  Google Scholar 

  45. Sprinkle, M. et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support from the German Science Foundation DFG in the framework of the Priority Program 1459 Graphene is acknowledged. E.M. and F.W. are grateful to the Einstein Foundation Berlin. The research at the free-electron laser FELBE was supported by the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant agreement No. 226716. Part of this work has been supported by the ERC-2012-AdG-320590 MOMB project as well as the EC Graphene Flagship. We are grateful to P. Michel and the FELBE team for their dedicated support. The Grenoble group acknowledges fruitful discussions with D. M. Basko.

Author information

Authors and Affiliations

Authors

Contributions

S.W., M.M., M.H., M.O. and M.P. conceived the experiments; M.M. performed the experiments, partly together with M.O. and S.W.; M.M., S.W., H.S. and M.H. analysed and interpreted the data; F.W., E.M. and A.K. developed the microscopic theoretical model. M.O. and M.P. originated the considerations for critical level occupation described in the Supplementary Methods. C.B. and W.A.d.H. prepared the samples; S.W. and E.M. wrote the paper with major input and edits from M.H. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Martin Mittendorff or Stephan Winnerl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 636 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittendorff, M., Wendler, F., Malic, E. et al. Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering. Nature Phys 11, 75–81 (2015). https://doi.org/10.1038/nphys3164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing