Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exciton–polariton condensates

An Erratum to this article was published on 28 November 2014

This article has been updated


Recently a new type of system exhibiting spontaneous coherence has emerged—the exciton–polariton condensate. Exciton–polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a superposition of an exciton and a cavity photon. Above a threshold density the polaritons macroscopically occupy the same quantum state, forming a condensate. The polaritons have a lifetime that is typically comparable to or shorter than thermalization times, giving them an inherently non-equilibrium nature. Nevertheless, they exhibit many of the features that would be expected of equilibrium Bose–Einstein condensates (BECs). The non-equilibrium nature of the system raises fundamental questions as to what it means for a system to be a BEC, and introduces new physics beyond that seen in other macroscopically coherent systems. In this review we focus on several physical phenomena exhibited by exciton–polariton condensates. In particular, we examine topics such as the difference between a polariton BEC, a polariton laser and a photon laser, as well as physical phenomena such as superfluidity, vortex formation, and Berezinskii–Kosterlitz–Thouless and Bardeen–Cooper–Schrieffer physics. We also discuss the physics and applications of engineered polariton structures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Exciton–polariton condensation.
Figure 2: Differences between a laser and a polariton BEC.
Figure 3: Superfluidity in exciton–polariton condensates.
Figure 4: Vortices and solitons in exciton–polariton superfluids.
Figure 5: Methods of creating trapping potentials for exciton–polariton condensates.

Change history

  • 13 November 2014

    In the version of this Review Article originally published, the sources of two images in Fig. 5a were incorrect. The first and second images from the left in Fig. 5a were taken from ref. 114 and ref. 99, respectively. This error has now been corrected in the online versions of the Review Article.


  1. 1

    Sargent, M., Scully, M. O. & Lamb, W. E. Laser Physics (Addison-Wesley, 1978).

    Google Scholar 

  2. 2

    Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation (Oxford Science Publications, 2003).

    MATH  Google Scholar 

  3. 3

    Tilley, D. R. & Tilley, J. Superfluidity and Superconductivity (IOP Publishing, 1990).

    Google Scholar 

  4. 4

    Leggett, A. Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  5. 5

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  Google Scholar 

  6. 6

    Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  7. 7

    Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article  ADS  Google Scholar 

  8. 8

    Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  9. 9

    Davis, K. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  Google Scholar 

  10. 10

    Nikuni, T., Oshikawa, M., Oosawa, A. & Tanaka, H. Bose–Einstein condensation of dilute magnons in TlCuCl3 . Phys. Rev. Lett. 84, 5868–5871 (2000).

    Article  ADS  Google Scholar 

  11. 11

    Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    Article  ADS  Google Scholar 

  12. 12

    Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    Article  ADS  Google Scholar 

  13. 13

    Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    ADS  Article  Google Scholar 

  14. 14

    Baumberg, J. J. et al. Spontaneous polarization buildup in a room-temperature polariton laser. Phys. Rev. Lett. 101, 136409 (2008).

    Article  ADS  Google Scholar 

  15. 15

    Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).

    Article  ADS  Google Scholar 

  16. 16

    Guillet, T. et al. Polariton lasing in a hybrid bulk ZnO microcavity. Appl. Phys. Lett. 99, 161104 (2011).

    Article  ADS  Google Scholar 

  17. 17

    Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nature Mater. 13, 247–252 (2014).

    Article  ADS  Google Scholar 

  18. 18

    Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  ADS  Google Scholar 

  19. 19

    Kavokin, A. Exciton–polaritons in microcavities: Recent discoveries and perspectives. Phys. Status Solidi B 247, 1898–1906 (2010).

    Article  ADS  Google Scholar 

  20. 20

    Richard, M. et al. Exciton–polariton Bose–Einstein condensation: Advances and issues. Int. J. Nanotech. 7, 668–683 (2010).

    Article  Google Scholar 

  21. 21

    Snoke, D. & Littlewood, P. Polariton condensates. Phys. Today 63, 42–47 (2010).

    Article  Google Scholar 

  22. 22

    Keeling, J. & Berloff, N. G. Exciton–polariton condensation. Contemp. Phys. 52, 131–151 (2011).

    Article  ADS  Google Scholar 

  23. 23

    Timofeev, V. & Sanvitto, D. (eds) Exciton Polaritons in Microcavities Vol. 172 (Springer, 2012).

  24. 24

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  25. 25

    Yamamoto, Y. & Imamoglu, A. Mesoscopic Quantum Optics (John Wiley and Sons, 1999).

    MATH  Google Scholar 

  26. 26

    Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  27. 27

    Nelsen, B. et al. Dissipationless flow and sharp threshold of a polariton condensate with long lifetime. Phys. Rev. X 3, 041015 (2013).

    Google Scholar 

  28. 28

    Tanese, D. et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nature Commun. 4, 1749 (2013).

    Article  ADS  Google Scholar 

  29. 29

    Schmitt-Rink, S., Chemla, D. S. & Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 32, 6601–6609 (1985).

    Article  ADS  Google Scholar 

  30. 30

    Ciuti, C., Savona, V., Piermarocchi, C., Quattropani, A. & Schwendimann, P. Role of the exchange of carriers in elastic exciton–exciton scattering in quantum wells. Phys. Rev. B 58, 7926–7933 (1998).

    Article  ADS  Google Scholar 

  31. 31

    Del Valle, E. et al. Dynamics of the formation and decay of coherence in a polariton condensate. Phys. Rev. Lett. 103, 096404 (2009).

    Article  ADS  Google Scholar 

  32. 32

    Tassone, F. & Yamamoto, Y. Exciton–exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999).

    Article  ADS  Google Scholar 

  33. 33

    Pau, S., Björk, G., Jacobson, J., Cao, H. & Yamamoto, Y. Stimulated emission of a microcavity dressed exciton and suppression of phonon scattering. Phys. Rev. B 51, 7090–7100 (1995).

    Article  ADS  Google Scholar 

  34. 34

    Tassone, F., Piermarocchi, C., Savona, V., Quattropani, A. & Schwendimann, P. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 56, 7554–7563 (1997).

    Article  ADS  Google Scholar 

  35. 35

    Spano, R. et al. Coherence properties of exciton polariton OPO condensates in one and two dimensions. New J. Phys. 14, 075018 (2012).

    Article  ADS  Google Scholar 

  36. 36

    Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).

    Article  ADS  Google Scholar 

  37. 37

    Kira, M. et al. Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments. Phys. Rev. Lett. 79, 5170–5173 (1997).

    Article  ADS  Google Scholar 

  38. 38

    Butov, L. V. A polariton laser. Nature 447, 540–541 (2007).

    Article  ADS  Google Scholar 

  39. 39

    Butov, L. V. & Kavokin, A. V. The behaviour of exciton–polaritons. Nature Photon. 6, 2 (2012).

    Article  ADS  Google Scholar 

  40. 40

    Deveaud-Plédran, B. The behaviour of exciton–polaritons. Nature Photon. 6, 205 (2012).

    Article  ADS  Google Scholar 

  41. 41

    Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: Exciton–polariton lasers. Phys. Rev. A 53, 4250–4253 (1996).

    Article  ADS  Google Scholar 

  42. 42

    Snoke, D. Polariton condensation and lasing. in Exciton–Polaritons in Microcavities Vol. 172 (eds Tomofeev, V. & Sanvitto, D.) 307–327 (Springer, 2012).

    Chapter  Google Scholar 

  43. 43

    Kasprzak, J., Solnyshkov, D. D., André, R., Dang, L. S. & Malpuech, G. Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes. Phys. Rev. Lett. 101, 146404 (2008).

    Article  ADS  Google Scholar 

  44. 44

    Dang, L. S., Heger, D., André, R., Bœuf, F. & Romestain, R. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett. 81, 3920–3923 (1998).

    Article  ADS  Google Scholar 

  45. 45

    Laussy, F. P., Malpuech, G., Kavokin, A. & Bigenwald, P. Spontaneous coherence buildup in a polariton laser. Phys. Rev. Lett. 93, 016402 (1997).

    Article  ADS  Google Scholar 

  46. 46

    Deng, H. et al. Quantum degenerate exciton–polaritons in thermal equilibrium. Phys. Rev. Lett. 97, 146402 (2006).

    Article  ADS  Google Scholar 

  47. 47

    Deng, H., Solomon, G. S., Hey, R., Ploog, K. H. & Yamamoto, Y. Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99, 126403 (2007).

    Article  ADS  Google Scholar 

  48. 48

    Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    Article  ADS  Google Scholar 

  49. 49

    Assmann, M. et al. From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proc. Natl Acad. Sci. USA 108, 1804–1809 (2011).

    Article  ADS  Google Scholar 

  50. 50

    Tempel, J-S. et al. Characterization of two-threshold behavior of the emission from a GaAs microcavity. Phys. Rev. B 85, 075318 (2012).

    Article  ADS  Google Scholar 

  51. 51

    Yamaguchi, M., Kamide, K., Nii, R., Ogawa, T. & Yamamoto, Y. Second thresholds in BEC–BCS-laser crossover of exciton–polariton systems. Phys. Rev. Lett. 111, 026404 (2013).

    Article  ADS  Google Scholar 

  52. 52

    Carusotto, I., Hu, S. X., Collins, L. A. & Smerzi, A. Bogoliubov–Cerenkov radiation in a Bose–Einstein condensate flowing against an obstacle. Phys. Rev. Lett. 97, 260403 (2006).

    Article  ADS  Google Scholar 

  53. 53

    Utsunomiya, S. et al. Observation of Bogoliubov excitations in exciton–polariton condensates. Nature Phys. 4, 700–705 (2008).

    Article  Google Scholar 

  54. 54

    Kohnle, V. et al. From single particle to superfluid excitations in a dissipative polariton gas. Phys. Rev. Lett. 106, 255302 (2011).

    Article  ADS  Google Scholar 

  55. 55

    Wouters, M. & Carusotto, I. Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007).

    Article  ADS  Google Scholar 

  56. 56

    Byrnes, T., Horikiri, T., Ishida, N., Fraser, M. & Yamamoto, Y. The negative Bogoliubov dispersion in exciton–polariton condensates. Phys. Rev. B. 85, 075130 (2012).

    Article  ADS  Google Scholar 

  57. 57

    Carusotto, I. & Ciuti, C. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004).

    Article  ADS  Google Scholar 

  58. 58

    Wouters, M. & Carusotto, I. Superfluidity and critical velocities in nonequilibrium Bose–Einstein condensates. Phys. Rev. Lett. 105, 020602 (2010).

    Article  ADS  Google Scholar 

  59. 59

    Keeling, J. Superfluid density of an open dissipative condensate. Phys. Rev. Lett. 107, 080402 (2011).

    Article  ADS  Google Scholar 

  60. 60

    Janot, A., Hyart, T., Eastham, P. R. & Rosenow, B. Superfluid stiffness of a driven dissipative condensate with disorder. Phys. Rev. Lett. 111, 230403 (2013).

    Article  ADS  Google Scholar 

  61. 61

    Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    Article  ADS  Google Scholar 

  62. 62

    Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  ADS  Google Scholar 

  63. 63

    Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Phys. 6, 527–533 (2010).

    Article  ADS  Google Scholar 

  64. 64

    Wouters, M. & Carusotto, I. Probing the excitation spectrum of polariton condensates. Phys. Rev. B 79, 125311 (2009).

    Article  ADS  Google Scholar 

  65. 65

    Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967).

    Article  ADS  Google Scholar 

  66. 66

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1967).

    Article  ADS  Google Scholar 

  67. 67

    Berezkinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems processing a continuous symmetry group. II. quantum systems. Sov. Phys. JETP 34, 610–616 (1972).

    ADS  Google Scholar 

  68. 68

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  ADS  Google Scholar 

  69. 69

    Hadzibabic, Z. & Dalibard, J. Two-dimensional Bose fluids: An atomic physics perspective. Riv. Nuovo Cimento 34, 389–434 (2011).

    Google Scholar 

  70. 70

    Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).

    Article  ADS  Google Scholar 

  71. 71

    Lagoudakis, K. G. et al. Observation of half-quantum vortices in an exciton–polariton condensate. Science 326, 974–976 (2009).

    Article  ADS  Google Scholar 

  72. 72

    Roumpos, G. et al. Single vortex–antivortex pair in an exciton–polariton condensate. Nature Phys. 7, 129–133 (2011).

    Article  ADS  Google Scholar 

  73. 73

    Manni, F. et al. Dissociation dynamics of singly charged vortices into half-quantum vortex pairs. Nature Commun. 3, 1309 (2012).

    Article  ADS  Google Scholar 

  74. 74

    Tosi, G. et al. Onset and dynamics of vortex–antivortex pairs in polariton optical parametric oscillator superfluids. Phys. Rev. Lett. 107, 036401 (2011).

    Article  ADS  Google Scholar 

  75. 75

    Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys. 6, 860–864 (2010).

    Article  ADS  Google Scholar 

  76. 76

    Manni, F. et al. Polariton condensation in a one-dimensional disordered potential. Phys. Rev. Lett. 106, 176401 (2011).

    Article  ADS  Google Scholar 

  77. 77

    Roumpos, G. et al. Power-law decay of the spatial correlation function in exciton–polariton condensates. Proc. Natl Acad. Sci. USA 109, 6467–6472 (2012).

    Article  ADS  Google Scholar 

  78. 78

    Nitsche, W. H. et al. Algebraic order and the Berezinskii–Kosterlitz–Thouless transition in an exciton–polariton gas. Preprint at (2014).

  79. 79

    Pigeon, S., Carusotto, I. & Ciuti, C. Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid. Phys. Rev. B 83, 144513 (2011).

    Article  ADS  Google Scholar 

  80. 80

    Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    Article  ADS  Google Scholar 

  81. 81

    Grosso, G., Nardin, G., Morier-Genoud, F., Léger, Y. & Deveaud-Plédran, B. Dynamics of dark-soliton formation in a polariton quantum fluid. Phys. Rev. B 86, 020509(R) (2012).

    Article  ADS  Google Scholar 

  82. 82

    Sich, M. et al. Observation of bright polariton solitons in a semiconductor microcavity. Nature Photon. 6, 50–55 (2012).

    Article  ADS  Google Scholar 

  83. 83

    Cilibrizzi, P. et al. Linear wave dynamics explains observations attributed to dark-solitons in a polariton quantum fluid. Phys. Rev. Lett. 113, 103901 (2014).

    Article  ADS  Google Scholar 

  84. 84

    Keldysh, L. V. & Kozlov, A. N. Collective properties of excitons in semiconductors. Sov. Phys. JETP 27, 521–528 (1968).

    ADS  Google Scholar 

  85. 85

    Comte, C. & Nozières, P. Exciton Bose condensation: The ground state of an electron-hole gas. I. mean field description of a simplified model. J. Phys. 43, 1069–1081 (1982).

    Article  Google Scholar 

  86. 86

    Keeling, J., Eastham, P. R., Szymanska, M. H. & Littlewood, P. B. Polariton condensation with localized excitons and propagating photons. Phys. Rev. Lett. 93, 226403 (2004).

    Article  ADS  Google Scholar 

  87. 87

    Keeling, J., Eastham, P. R., Szymanska, M. H. & Littlewood, P. B. BCS–BEC crossover in a system of microcavity polaritons. Phys. Rev. B 72, 115320 (2005).

    Article  ADS  Google Scholar 

  88. 88

    Byrnes, T., Horikiri, T., Ishida, N. & Yamamoto, Y. BCS wave-function approach to the BEC–BCS crossover of exciton–polariton condensates. Phys. Rev. Lett. 105, 186402 (2010).

    Article  ADS  Google Scholar 

  89. 89

    Kamide, K. & Ogawa, T. What determines the wave function of electron–hole pairs in polariton condensates? Phys. Rev. Lett. 105, 056401 (2010).

    Article  ADS  Google Scholar 

  90. 90

    Horikiri, T. et al. Temperature dependence of highly excited exciton polaritons in semiconductor microcavities. J. Phys. Soc. Jpn 82, 084709 (2013).

    Article  ADS  Google Scholar 

  91. 91

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  92. 92

    Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).

    Article  ADS  Google Scholar 

  93. 93

    Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    Article  ADS  Google Scholar 

  94. 94

    Tosi, G. et al. Geometrically locked vortex lattices in semiconductor quantum fluids. Nature Commun. 3, 1243 (2012).

    Article  ADS  Google Scholar 

  95. 95

    Cerda-Mendez, E. A. et al. Polariton condensation in dynamic acoustic lattices. Phys. Rev. Lett. 105, 116402 (2010).

    Article  ADS  Google Scholar 

  96. 96

    Lai, C. W. et al. Coherent zero-state and pi-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).

    Article  ADS  Google Scholar 

  97. 97

    Kim, N. Y. et al. Dynamical d-wave condensation of exciton–polaritons in a two-dimensional square-lattice potential. Nature Phys. 7, 681–686 (2011).

    Article  ADS  Google Scholar 

  98. 98

    Kaitouni, R. I. et al. Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B 74, 155311 (2006).

    Article  ADS  Google Scholar 

  99. 99

    Nardin, G., Leger, Y., Pietka, B., Morier-Genoud, F. & Deveaud-Pledran, B. Phase-resolved imaging of confined exciton–polariton wave functions in elliptical traps. Phys. Rev. B 82, 045304 (2010).

    Article  ADS  Google Scholar 

  100. 100

    Galbiati, M. et al. Polariton condensation in photonic molecules. Phys. Rev. Lett. 108, 126403 (2011).

    Article  ADS  Google Scholar 

  101. 101

    Masumoto, N. et al. Exciton–polariton condensates with flat bands in a two-dimensional kagome lattice. New J. Phys. 14, 065002 (2012).

    Article  ADS  Google Scholar 

  102. 102

    Kim, N. Y. et al. Exciton–polariton condensates near the Dirac point in a triangular lattice. New J. Phys. 15, 035032 (2013).

    Article  ADS  Google Scholar 

  103. 103

    Kusudo, K. et al. Stochastic formation of polariton condensates in two degenerate orbital states. Phys. Rev. B 87, 214503 (2013).

    Article  ADS  Google Scholar 

  104. 104

    Backhaus, S. et al. Discovery of a metastable π-state in a superfluid 3He weak link. Nature 392, 687–690 (1998).

    Article  ADS  Google Scholar 

  105. 105

    Deveaud-Plédran, B. Polaritronics in view. Nature 453, 297–298 (2008).

    Article  ADS  Google Scholar 

  106. 106

    Liew, T. C. H., Kavokin, A. & Shelykh, I. A. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).

    Article  ADS  Google Scholar 

  107. 107

    Amo, A. et al. Exciton–polariton spin switches. Nature Photon. 4, 361–366 (2010).

    Article  ADS  Google Scholar 

  108. 108

    Nguyen, H. S. et al. Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys. Rev. Lett. 110, 236601 (2013).

    Article  ADS  Google Scholar 

  109. 109

    Ballarini, D. et al. All-optical polariton transistor. Nature Commun. 4, 1778 (2013).

    Article  ADS  Google Scholar 

  110. 110

    Byrnes, T., Yamamoto, Y. & van Loock, P. Unconditional generation of bright coherent non-Gaussian light from exciton–polariton condensates. Phys. Rev. B 87, 201301(R) (2013).

    Article  ADS  Google Scholar 

  111. 111

    Bhattacharya, P., Xiao, B., Das, A., Bhowmick, S. & Heo, J. Solid state electrically injected exciton–polariton laser. Phys. Rev. Lett. 110, 206403 (2013).

    Article  ADS  Google Scholar 

  112. 112

    Snoke, D. A feature rather than a bug. Nature Phys. 4, 673 (2008).

    Article  ADS  Google Scholar 

  113. 113

    Love, A. P. D. et al. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101, 067404 (2008).

    Article  ADS  Google Scholar 

  114. 114

    Bajoni, D. et al. Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).

    Article  ADS  Google Scholar 

  115. 115

    De Lima, M. M. Jr et al. Phonon-induced polariton superlattices. Phys. Rev. Lett. 97, 045501 (2006).

    Article  ADS  Google Scholar 

Download references


We thank B. Devaud-Plédran for providing valuable comments on the manuscript. This work is supported by the FIRST program through JSPS, the Okawa Foundation, the Transdisciplinary Research Integration Center, and DARPA QuEST program through Navy/SPAWAR Grant N66001-09-1-2024, the Inamori Foundation, NTT Basic Laboratories and JSPS Kakenhi Grant Number 26790061.

Author information




T.B. and N.Y.K. wrote the manuscript. Y.Y. oversaw the work.

Corresponding author

Correspondence to Tim Byrnes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Byrnes, T., Kim, N. & Yamamoto, Y. Exciton–polariton condensates. Nature Phys 10, 803–813 (2014).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing