Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics


Lars Onsager and Richard Feynman envisaged that the three-dimensional (3D) superfluid-to-normal λ transition in 4He occurs through the proliferation of vortices. This process should hold for every phase transition in the same universality class. The role of topological defects in symmetry-breaking phase transitions has become a prime topic in cosmology and high-temperature superconductivity, even though direct imaging of these defects is challenging. Here we show that the U(1) continuous symmetry that emerges at the ferroelectric critical point of multiferroic hexagonal manganites leads to a similar proliferation of vortices. Moreover, the disorder field (vortices) is coupled to an emergent U(1) gauge field, which becomes massive by means of the Higgs mechanism when vortices condense (span the whole system) on heating above the ferroelectric transition temperature. Direct imaging of the vortex network in hexagonal manganites offers unique experimental access to this dual description of the ferroelectric transition, while enabling tests of the Kibble–Zurek mechanism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Dual description of a phase transition with Z2 × Z3 symmetry.
Figure 2: 3D picture of vortex cores: depth profiling of vortex domain patterns.
Figure 3: Vortex–antivortex pair correlation function.
Figure 4: Domain patterns for different initial annealing temperatures Ti (above, near and below Tc).
Figure 5: Dependence of vortex density nv on cooling rate.
Figure 6: Winding numbers for KZM defects.


  1. 1

    Anderson, P. W. Basic Notions of Condensed Matter Physics (Benjamin/Cummings Pub. Co., Advanced Book Program, 1984).

    Google Scholar 

  2. 2

    Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    José, J. V., Kadanoff, L. P., Kirkpatrick, S. & Nelson, D. R. Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217–1241 (1977).

    ADS  Article  Google Scholar 

  4. 4

    Onsager, L. The two fluid model for helium II [remarks by L. Onsager on pp. 249–250]. Nuovo Cimento Suppl. 6, 249–250 (1949).

    MathSciNet  Article  Google Scholar 

  5. 5

    Feynman, R. in Progress in Low Temperature Physics (ed Gorter, C.) Vol. I. (North-Holland, 1955).

    Google Scholar 

  6. 6

    Vilenkin, A. & Shellard, E. P. S. Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, 1994).

    Google Scholar 

  7. 7

    Kibble, T. Phase-transition dynamics in the lab and the universe. Phys. Today 60, 47–52 (September, 2007).

    Article  Google Scholar 

  8. 8

    Shenoy, S. R. & Chattopadhyay, B. Anisotropic three-dimensional XY model and vortex-loop scaling. Phys. Rev. B 51, 9129–9147 (1995).

    ADS  Article  Google Scholar 

  9. 9

    Domínguez, D., Grønbech-Jensen, N., Bishop, A. R. & Shenoy, S. R. Transformer configuration in three dimensional Josephson lattices at zero magnetic field. Phys. Rev. Lett. 75, 717–720 (1995).

    ADS  Article  Google Scholar 

  10. 10

    Kiometzis, M., Kleinert, H. & Schakel, A. M. J. Critical exponents of the superconducting phase transition. Phys. Rev. Lett. 73, 1975–1977 (1994).

    ADS  Article  Google Scholar 

  11. 11

    Nguyen, A. K. & Sudbø, A. Onsager loop transition and first-order flux-line lattice melting in high-Tc superconductors. Phys. Rev. B 57, 3123–3143 (1998).

    ADS  Article  Google Scholar 

  12. 12

    Ryu, S. & Stroud, D. Nature of the low-field transition in the mixed state of high-temperature superconductors. Phys. Rev. B 57, 14476–14497 (1998).

    ADS  Article  Google Scholar 

  13. 13

    Golubchik, D., Polturak, E. & Koren, G. Evidence for long-range correlations within arrays of spontaneously created magnetic vortices in a Nb thin-film superconductor. Phys. Rev. Lett. 104, 247002 (2010).

    ADS  Article  Google Scholar 

  14. 14

    Kleinert, H. Gauge Fields in Condensed Matter (World Scientific Publishing, 1989).

    Google Scholar 

  15. 15

    Kleinert, H. From Landau’s order parameter to modern disorder fields. Am. Inst. Phys. Conf. Ser. 1205, 103–107 (2010).

    ADS  Google Scholar 

  16. 16

    Kiometzis, M., Kleinert, H. & Schakel, A. M. J. Dual description of the superconducting phase transition. Fortschr. Phys.-Prog. Phys. 43, 697–732 (1995).

    ADS  Article  Google Scholar 

  17. 17

    Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A: Math. Gen. 9, 1387–1398 (1976).

    ADS  Article  Google Scholar 

  18. 18

    Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985).

    ADS  Article  Google Scholar 

  19. 19

    del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: Topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

    ADS  Article  Google Scholar 

  20. 20

    Chuang, I., Durrer, R., Turok, N. & Yurke, B. Cosmology in the laboratory—Defect dynamics in liquid-crystals. Science 251, 1336–1342 (1991).

    ADS  Article  Google Scholar 

  21. 21

    Ruutu, V. M. H. et al. Vortex formation in neutron-irradiated superfluid He-3 as an analogue of cosmological defect formation. Nature 382, 334–336 (1996).

    ADS  Article  Google Scholar 

  22. 22

    Bauerle, C., Bunkov, Y. M., Fisher, S. N., Godfrin, H. & Pickett, G. R. Laboratory simulation of cosmic string formation in the early Universe using superfluid He-3. Nature 382, 332–334 (1996).

    ADS  Article  Google Scholar 

  23. 23

    Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006).

    ADS  Article  Google Scholar 

  24. 24

    Weiler, C. N. et al. Spontaneous vortices in the formation of Bose–Einstein condensates. Nature 455, 948–951 (2008).

    ADS  Article  Google Scholar 

  25. 25

    Ulm, S. et al. Observation of the Kibble–Zurek scaling law for defect formation in ion crystals. Nature Commun. 4, 2290 (2013).

    ADS  Article  Google Scholar 

  26. 26

    Pyka, K. et al. Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals. Nature Commun. 4, 2291 (2013).

    ADS  Article  Google Scholar 

  27. 27

    Lamporesi, G., Donadello, S., Serafini, S., Dalfovo, F. & Ferrari, G. Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate. Nature Phys. 9, 655–659 (2013).

    ADS  Article  Google Scholar 

  28. 28

    Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3 . Nature Mater. 9, 253–258 (2010).

    ADS  Article  Google Scholar 

  29. 29

    Mostovoy, M. Multiferroics: A whirlwind of opportunities. Nature Mater. 9, 188–190 (2010).

    ADS  Article  Google Scholar 

  30. 30

    Jungk, T., Hoffmann, A., Fiebig, M. & Soergel, E. Electrostatic topology of ferroelectric domains in YMnO3 . Appl. Phys. Lett. 97, 012904 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Lochocki, E. B., Park, S., Lee, N., Cheong, S. W. & Wu, W. D. Piezoresponse force microscopy of domains and walls in multiferroic HoMnO3 . Appl. Phys. Lett. 99, 232901 (2011).

    ADS  Article  Google Scholar 

  32. 32

    Chae, S. C. et al. Evolution of the domain topology in a ferroelectric. Phys. Rev. Lett. 110, 167601 (2013).

    ADS  Article  Google Scholar 

  33. 33

    Chae, S. C. et al. Self-organization, condensation, and annihilation of topological vortices and antivortices in a multiferroic. Proc. Natl Acad. Sci. USA 107, 21366–21370 (2010).

    ADS  Article  Google Scholar 

  34. 34

    Blankschtein, D., Ma, M., Berker, A. N., Grest, G. S. & Soukoulis, C. M. Ordering of a stacked frustrated triangular system in 3 dimensions. Phys. Rev. B 29, 5250–5252 (1984).

    ADS  Article  Google Scholar 

  35. 35

    Oshikawa, M. Ordered phase and scaling in Z(n) models and the three-state antiferromagnetic Potts model in three dimensions. Phys. Rev. B 61, 3430–3434 (2000).

    ADS  Article  Google Scholar 

  36. 36

    Vachaspati, T. & Vilenkin, A. Formation and evolution of cosmic strings. Phys. Rev. D 30, 2036–2045 (1984).

    ADS  Article  Google Scholar 

  37. 37

    Chae, S. C. et al. Direct observation of the proliferation of ferroelectric loop domains and vortex–antivortex pairs. Phys. Rev. Lett. 108, 167603 (2012).

    ADS  Article  Google Scholar 

  38. 38

    Griffin, S. M. et al. Scaling behavior and beyond equilibrium in the hexagonal manganites. Phys. Rev. X 2, 041022 (2012).

    Google Scholar 

  39. 39

    Campostrini, M., Hasenbusch, M., Pelissetto, A., Rossi, P. & Vicari, E. Critical behavior of the three-dimensional XY universality class. Phys. Rev. B 63, 214503 (2001).

    ADS  Article  Google Scholar 

  40. 40

    Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

    ADS  Article  Google Scholar 

  41. 41

    Zurek, W. H. Topological relics of symmetry breaking: Winding numbers and scaling tilts from random vortex–antivortex pairs. J. Phys. Condens. Matter 25, 404209 (2013).

    Article  Google Scholar 

  42. 42

    Liu, F. & Mazenko, G. F. Defect–defect correlation in the dynamics of 1st-order phase-transition. Phys. Rev. B 46, 5963–5971 (1992).

    ADS  Article  Google Scholar 

  43. 43

    Hove, J. & Sudbo, A. Anomalous scaling dimensions and stable charged fixed point of type-II superconductors. Phys. Rev. Lett. 84, 3426–3429 (2000).

    ADS  Article  Google Scholar 

  44. 44

    Monaco, R., Aaroe, M., Mygind, J., Rivers, R. J. & Koshelets, V. P. Experiments on spontaneous vortex formation in Josephson tunnel junctions. Phys. Rev. B 74, 144513 (2006).

    ADS  Article  Google Scholar 

  45. 45

    Monaco, R., Mygind, J., Rivers, R. J. & Koshelets, V. P. Spontaneous fluxoid formation in superconducting loops. Phys. Rev. B 80, 180501 (2009).

    ADS  Article  Google Scholar 

  46. 46

    Kavoussanaki, E., Monaco, R. & Rivers, R. J. Testing the Kibble–Zurek scenario with annular Josephson tunnel junctions. Phys. Rev. Lett. 85, 3452–3455 (2000).

    ADS  Article  Google Scholar 

  47. 47

    Dodd, M. E., Hendry, P. C., Lawson, N. S., McClintock, P. V. E. & Williams, C. D. H. Nonappearance of vortices in fast mechanical expansions of liquid He-4 through the lambda transition. Phys. Rev. Lett. 81, 3703–3706 (1998).

    ADS  Article  Google Scholar 

Download references


We thank S. C. Chae, A. del campo and V. Zapf for stimulating discussion. This project was in part supported by the DOE under the LDRD program at the Los Alamos National Laboratory. The work at Rutgers University was supported by the DOE under Grant No. DE-FG02-07ER46382. Y.K. acknowledges the financial support by the RIKEN iTHES Project. The work was also supported by China Scholarship Council.

Author information




S-W.C. designed and supervised the experiment. W.H.Z. and C.D.B. discussed the simulations and experiments, and wrote the section on the Kibble–Zurek mechanism. X.W. carried out annealing experiments, AFM and PFM work. F.F. performed PFM work. D.F., B.C. and Y.L. analysed vortex–antivortex optical images and V.K. calculated the experimental correlation functions. S-Z.L., Y.K. and G-W.C. simulated the theoretical results. S-Z.L., X.W., S-W.C., W.H.Z., C.D.B. and V.K. co-wrote the paper. All authors discussed the results.

Corresponding author

Correspondence to Sang-Wook Cheong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 876 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Wang, X., Kamiya, Y. et al. Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics. Nature Phys 10, 970–977 (2014).

Download citation

Further reading