Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Abstract

A three-dimensional (3D) topological insulator (TI) is a quantum state of matter with a gapped insulating bulk yet a conducting surface hosting topologically protected gapless surface states. One of the most distinct electronic transport signatures predicted for such topological surface states (TSS) is a well-defined half-integer quantum Hall effect (QHE) in a magnetic field, where the surface Hall conductivities become quantized in units of (1/2)e2/h (e being the electron charge, h the Planck constant) concomitant with vanishing resistance. Here, we observe a well-developed QHE arising from TSS in an intrinsic TI of BiSbTeSe2. Our samples exhibit surface-dominated conduction even close to room temperature, whereas the bulk conduction is negligible. At low temperatures and high magnetic fields perpendicular to the top and bottom surfaces, we observe well-developed integer quantized Hall plateaux, where the two parallel surfaces each contribute a half-integer e2/h quantized Hall conductance, accompanied by vanishing longitudinal resistance. When the bottom surface is gated to match the top surface in carrier density, only odd integer QH plateaux are observed, representing a half-integer QHE of two degenerate Dirac gases. This system provides an excellent platform to pursue a plethora of exotic physics and novel device applications predicted for TIs, ranging from magnetic monopoles and Majorana particles to dissipationless electronics and fault-tolerant quantum computers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Surface versus bulk conduction in BSTS.
Figure 2: Electric field effect and gate-tuned quantum Hall effect (QHE) in BSTS.
Figure 3: Magnetic field tuned QHE.
Figure 4: QHE measured in a different sample and temperature dependence.

References

  1. 1

    Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  Article  Google Scholar 

  2. 2

    Girvin, S. M. in Topological Aspects of Low Dimensional Systems (eds Comtet, A., Jolicoeur, T., Ouvry, S. & David, F.) (Springer, 2000).

    Google Scholar 

  3. 3

    Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).

    ADS  Article  Google Scholar 

  4. 4

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    ADS  Article  Google Scholar 

  5. 5

    Prange, R. E., Girvin, S. M. & Klitzing, K. v. (eds) The Quantum Hall Effect 2nd edn (Springer, 1989).

  6. 6

    Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Article  Google Scholar 

  8. 8

    Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    ADS  Article  Google Scholar 

  9. 9

    Qi, X. L., Hughes, T. L. & Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    ADS  Article  Google Scholar 

  10. 10

    Liu, C. X., Qi, X. L., Dai, X., Fang, Z. & Zhang, S. C. Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells. Phys. Rev. Lett. 101, 146802 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  Article  Google Scholar 

  13. 13

    Analytis, J. G. et al. Two-dimensional surface state in the quantum limit of a topological insulator. Nature Phys. 6, 960–964 (2010).

    ADS  Article  Google Scholar 

  14. 14

    Qu, D. X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3 . Science 329, 821–824 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Ren, Z., Taskin, A. A., Sasaki, S., Segawa, K. & Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 82, 241306 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Xiong, J., Petersen, A. C., Qu, D., Cava, R. J. & Ong, N. P. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6 Ω cm). Physica E 44, 917–920 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Taskin, A. A., Ren, Z., Sasaki, S., Segawa, K. & Ando, Y. Observation of Dirac holes and electrons in a topological insulator. Phys. Rev. Lett. 107, 016801 (2011).

    ADS  Article  Google Scholar 

  18. 18

    Brüne, C. et al. Quantum Hall effect from the topological surface states of strained bulk HgTe. Phys. Rev. Lett. 106, 126803 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Kozlov, D. A. et al. Transport properties of a 3D topological insulator based on a strained high-mobility HgTe film. Phys. Rev. Lett. 112, 196801 (2014).

    ADS  Article  Google Scholar 

  20. 20

    Analytis, J. G. et al. Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: A comparison of photoemission and Shubnikov–de Haas measurements. Phys. Rev. B 81, 205407 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Checkelsky, J. G., Hor, Y. S., Cava, R. J. & Ong, N. P. Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3 . Phys. Rev. Lett. 106, 196801 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Kim, D. et al. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3 . Nature Phys. 8, 459–463 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Arakane, T. et al. Tunable Dirac cone in the topological insulator Bi2−xSbxTe3−ySey . Nature Commun. 3, 636 (2012).

    ADS  Article  Google Scholar 

  24. 24

    Xia, B. et al. Indications of surface-dominated transport in single crystalline nanoflake devices of topological insulator Bi1.5Sb0.5Te1.8Se1.2 . Phys. Rev. B 87, 085442 (2013).

    ADS  Article  Google Scholar 

  25. 25

    Segawa, K. et al. Ambipolar transport in bulk crystals of a topological insulator by gating with ionic liquid. Phys. Rev. B 86, 075306 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Neupane, M. et al. Topological surface states and Dirac point tuning in ternary topological insulators. Phys. Rev. B 85, 235406 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Gao, B. F. et al. Gate-controlled linear magnetoresistance in thin Bi2Se3 sheets. Appl. Phys. Lett. 100, 212402 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Giraud, S., Kundu, A. & Egger, R. Electron–phonon scattering in topological insulator thin films. Phys. Rev. B 85, 035441 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Skinner, B., Chen, T. & Shklovskii, B. I. Effects of bulk charged impurities on the bulk and surface transport in three-dimensional topological insulators. J. Exp. Theor. Phys. 117, 579–592 (2013).

    ADS  Article  Google Scholar 

  30. 30

    Cao, H. et al. Quantized Hall effect and Shubnikov–de Haas oscillations in highly doped Bi2Se3: Evidence for layered transport of bulk carriers. Phys. Rev. Lett. 108, 216803 (2012).

    ADS  Article  Google Scholar 

  31. 31

    Cao, H. et al. Structural and electronic properties of highly doped topological insulator Bi2Se3 crystals. Phys. Status Solidi 7, 133–135 (2013).

    Google Scholar 

  32. 32

    Jabakhanji, B. et al. Tuning the transport properties of graphene films grown by CVD on SiC(0001): Effect of in situ hydrogenation and annealing. Phys. Rev. B 89, 085422 (2014).

    ADS  Article  Google Scholar 

  33. 33

    Zhang, Y. Y., Wang, X. R. & Xie, X. C. Three-dimensional topological insulator in a magnetic field: Chiral side surface states and quantized Hall conductance. J. Phys. Condens. Matter 24, 015004 (2012).

    ADS  Article  Google Scholar 

  34. 34

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    ADS  Article  Google Scholar 

  35. 35

    Zhang, Y. et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    ADS  Article  Google Scholar 

  36. 36

    Büttner, B. et al. Single valley Dirac fermions in zero-gap HgTe quantum wells. Nature Phys. 7, 418–422 (2011).

    ADS  Article  Google Scholar 

  37. 37

    Lee, D. H. Surface states of topological insulators: The Dirac fermion in curved two-dimensional spaces. Phys. Rev. Lett. 103, 196804 (2009).

    ADS  Article  Google Scholar 

  38. 38

    Chu, R. L., Shi, J. & Shen, S. Q. Surface edge state and half-quantized Hall conductance in topological insulators. Phys. Rev. B 84, 085312 (2011).

    ADS  Article  Google Scholar 

  39. 39

    Vafek, O. Quantum Hall effect in a singly and doubly connected three-dimensional topological insulator. Phys. Rev. B 84, 245417 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from DARPA MESO program (Grant N66001-11-1-4107). H.N. and C-K.S. acknowledge support from the Welch Foundation (Grant F-1672) and ARO (Grants W911NF-09-1-0527 and W911NF-12-1-0308). High magnetic field transport measurements were performed at the National High Magnetic Field Laboratory (NHMFL), which is jointly supported by the National Science Foundation (DMR0654118) and the State of Florida. We thank E. Palm, T. Murphy, J. Jaroszynski, E. Sang, H. Cao, J. Coy and T. Wu for experimental assistance.

Author information

Affiliations

Authors

Contributions

Y.P.C. supervised the research. I.M. synthesized the crystals. Y.X. characterized the materials, fabricated the devices, performed the transport measurements, and analysed the data. J.T. performed EDX characterization. C.L., N.A. and M.Z.H. performed ARPES characterization. H.N. and C-K.S. performed STS characterization. J.H. assisted the transport measurements. Y.P.C. and Y.X. wrote the paper, with comments from other co-authors.

Corresponding author

Correspondence to Yong P. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1803 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Miotkowski, I., Liu, C. et al. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nature Phys 10, 956–963 (2014). https://doi.org/10.1038/nphys3140

Download citation

Further reading