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Enhancement of long-range correlations in a
2D vortex lattice by an incommensurate 1D
disorder potential
I. Guillamón1,2,3*, R. Córdoba4,5†, J. Sesé4,5, J. M. De Teresa4,5,6, M. R. Ibarra4,5, S. Vieira1,2

and H. Suderow1,2

Long-range correlations in two-dimensional (2D) systems
are significantly altered by disorder potentials. Theory has
predicted the existence of disorder-induced phenomena, such
as Anderson localization1 or the emergence of a Bose glass2.
More recently, it has been shown that when disorder breaks
2D continuous symmetry, long-range correlations can be
enhanced3. Experimentally, developments in quantum gases
have allowed the observation of the e�ects of competition
between interaction and disorder4,5. However, experiments
exploring thee�ectof symmetry-breakingdisorderare lacking.
Here,we create a2Dvortex lattice at0.1K in a superconducting
thin film with a well-defined 1D thickness modulation—the
symmetry-breaking disorder—and track the field-induced
modification using scanning tunnelling microscopy. We find
that the 1D modulation becomes incommensurate with the
vortex lattice anddrives anorder–disorder transition, behaving
as a scale-invariant disorder potential. We show that the
transition occurs in two steps and is mediated by the
proliferation of topological defects. The resulting critical
exponents determining the loss of positional and orientational
order are far above theoretical expectations for scale-invariant
disorder6–8 and follow instead the critical behaviour describing
dislocation unbinding melting9,10. Our data show that ran-
domness disorders a 2D crystal, with enhanced long-range
correlations due to the presence of a 1D modulation.

The competition between order and disorder is a fundamental
problem in condensed-matter physics, which directly impacts
many different systems, such as crystalline solids7,11, electronic
or magnetic arrangements12, localization in metals and
superconductors, or vortex lattices in superconductors and
condensates4,13. In 2D systems, long wavelength fluctuations induce
deviations in the atomic positions from the perfect lattice, with
the mean-squared displacement diverging logarithmically at large
distances14. One major consequence is the so-called Mermin–
Wagner–Hohenberg (MWH) theorem14,15, which states that no true
order exists in 2D systems at any finite temperature. Usually, we
can distinguish between static quenched disorder and fluctuations.
In the absence of quenched disorder, thermal fluctuations drive the
2Dmelting transition which is described by Berezinskii–Kosterlitz–

Thouless–Halperin–Nelson–Young (BKTHNY) theory through the
two-stage proliferation and unbinding of topological defects9,10,16,17.
Quenched disorder, on the other hand, is expected to suppress
long-range correlations more effectively than temperature18. It
can be classified as pinning with identifiable length scales, such as
impurities or defects in 2D crystals, or as scale-invariant (random)
disorder, as for example in an amorphous film. Pinning destroys
long-range 2D correlations at any strength19,20. Scale-invariant
disorder produces power-law decaying correlations and a transition
to a disordered lattice with exponentially falling correlations
above a critical disorder strength6,7. The order–disorder transition
induced by scale-invariant disorder has been investigated in a wide
range of physical systems, such as 2D disordered XY models6, 2D
solids7, Josephson junction arrays21, colloids or Lennard-Jones
systems22. However, the disorder mechanism—the way in which
disorder proliferates at zero temperature—has not been observed
directly. Disorder-induced order has been recently proposed
when quenched disorder breaks the continuous 2D symmetry,
for example, by introducing a 1D periodic disorder potential3.
Within this scenario, true long-range order may be favoured
by the 1D disorder, breaking the MWH theorem. Calculations
show the stabilization of the quantum Hall ferromagnetic state in
graphenemonolayers due to strain-induced easy-plane anisotropy23
or improved control of the relative phase in randomly coupled
condensates24. The experimental realization of such a disorder-
induced order in the absence of thermal fluctuations has not yet
been reported. The effect of symmetry breaking on microscopic
properties and the critical exponents of the order–disorder
transition are unknown.

Here we address these questions by directly imaging the
order–disorder transition in a 2D vortex lattice induced by a
1D periodic potential using scanning tunnelling microscopy at
0.1 K. By changing the magnetic field, we modify the coupling
strength between the 1D periodic potential—produced by a surface
corrugation with period w—and the vortex lattice, as well as
the intervortex distance a0 = (3/4)1/4(φ0/B)1/2 (see Methods and
Supplementary Information for a detailed description of sample
preparation and the experimental procedure). This allows us to
go from a locked 2D solid, where the lattice is commensurate
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Figure 1 | Unlocking of the 2D vortex lattice on a linear potential. a, Sketch of a commensurate arrangement locked to the 1D potential for small p (left)
and an unlocked lattice producing a floating solid incommensurate with the 1D modulation for large p (right). b, Scanning electron microscopy image of the
sample (left). STM topography of a 1× 1.2µm2 area (right) with the profile along the blue dashed line given below. Red dashed lines indicate the 1D
modulation. c, Sequence of vortex lattice images taken at 0.1 K with increasing magnetic field up to 0.5 T (see Supplementary Movie 1 for the entire
sequence). Red dashed lines indicate the 1D modulation and vortices are shown as black points. Blue lines are Delaunay triangulation. d, Dependence on
magnetic field of the angle between the 1D modulation and the vortex lattice. Lines joining points are guides to the eye. When p<5 (H<0.4T; blue
background), the vortex lattice oscillates between the two primary commensurate arrangements θ=0◦ (green dotted line) and θ=30◦ (yellow dotted
line). This satisfies, respectively, w=n

√
3a0/2 and w=ma0, with n andm integers (the n= 1 andm= 1 cases are highlighted in the upper (yellow) and lower

(green) right panels of d, whereas the n= 1 andm=4 commensurate arrangements are identified in the vortex images of c at respectively 0.05 T and
0.25 T). At fields above 0.4 T (w>p; khaki coloured in c and d), the lattice unlocks and adopts an orientation independent of the 1D potential.

with the 1D potential (Fig. 1a, left), to a floating 2D solid at
larger densities, where it becomes incommensurate with the 1D
modulation (Fig. 1a, right).

The coupling strength between the vortex lattice and the 1D
modulation depends on the commensurability ratio p, defined as
p=w/a0, and θ the relative orientation between them (ref. 25).
Figure 1c shows a sequence of vortex lattice images obtained at lower
magnetic fields. Below 0.4 T, with p. 5, the lattice suffers a series
of commensurate to incommensurate transitions that produces a
rotation of its overall orientation between θ = 0◦ and 30◦, while
maintaining a perfect hexagonal arrangement26. Figure 1d shows θ
as a function of p for vortex lattice images taken with increasing
magnetic field. On increasing p above 0.4 T (p& 5), the rotation of
the vortex lattice ceases and its orientation becomes independent
of the 1D potential. The lattice is incommensurate with the 1D
potential and forms a floating 2D solid.

In Fig. 2a we show a sequence of vortex lattice images between
0.5 T and 5.5 T. We identify three different phases. In phase
I, between 0.5 T and 2T, there are no topological defects, and
all vortices are surrounded by six nearest neighbours. However,
the vortex positions show small deviations from those expected
for a perfect hexagonal lattice, which become gradually more
pronounced on increasing the magnetic field. Between 2.5 T and
4.5 T, in phase II, we observe the appearance of dislocations, that
is pairs of five-fold and seven-fold coordinated vortices. We identify
bound dislocation pairs as well as isolated dislocations. Above 4.5 T,
in phase III, the density of dislocations increases strongly and we
identify the appearance of free disclinations in the form of isolated

five-fold or seven-fold coordinated vortices. The images at 5 T and
5.5 T show that defects exist over the whole sample, producing a
disordered vortex lattice.

One important observation—the appearance of fluctuations in
the local vortex density ρ—is shown in Fig. 2b,c. The standard
deviation in ρ increases with the field-induced proliferation of
defects—from less than 5% in phase I to up to 20% at 5.5 T in
phase III (Fig. 2c). Density fluctuations are characteristic of a long
wavelength or fully uncorrelated quenched disorder potential27.

To further quantify the spatial dependence of vortex disorder, we
calculate the translational and orientational correlation functions,
GK(r) and G6(r) (Methods and Supplementary Information).
Figure 3a shows the evolution ofGK(r) andG6(r)with the magnetic
field. In phase I, between 0.5 T and 2T, we observe that G6(r)
remains close to 1 and is independent of the distance, whereas
GK(r) decays following a power-law dependence, GK(r)∼ r−ηK ,
with ηK increasing with field. Above 2 T, in phase II, GK(r)
decays exponentially at large distances when ηK = 1/3, when a
finite amount of defects starts to be observed in the images.
Here, G6(r) shows a power-law decay, G6(r) ∼ r−η6 , with η6
increasing continuously from 2T up to 4.5 T. In phase III,
above 5 T, G6(r) decays exponentially when η6 = 1/4, and the
defect density diverges—reaching 0.4—indicating that nearly half
of all vortices have five or seven nearest neighbours at 5.5 T
(Fig. 3b). The observed behaviour follows the microscopic two-
step sequence for the proliferation of disorder described by
BKTHNY theory, with critical values for the exponents ηcK=1/3 and
ηc6=1/4 (ref. 28).
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Figure 2 | Order–disorder transition in the 2D vortex lattice at 0.1 K. a, Vortex lattice images taken at 0.1 K on increasing the magnetic field from 0.5 T to
5.5 T (see Supplementary Movie 2). Vortices are shown by black points and the Delaunay triangulated lattice as blue lines. Vortices with five and seven
nearest neighbours are identified by green and orange points. Dislocations formed by five and seven nearest neighbour pairs of vortices are identified by
black triangles, pairs of dislocations by black rectangles and isolated disclinations by black circles. Above 4T, the image size is decreased to better resolve
individual vortices. b, Positional fluctuations of the vortex density during the disorder process calculated from the vortex images shown in a. Colour scale is
given at the top right (see Section III.3 in Supplementary Information). Deviations in the local vortex density become stronger with increasing magnetic
field. c, Histograms of the vortex density obtained from the images in b using the same colour scale.

To investigate the microscopic disorder mechanism, we further
analyse the first entrance of disorder in the ordered phase I.
Deviations in the vortex positions with respect to a perfect
hexagonal lattice can be quantified by the relative displacement
correlator B(r) (given by B(r) = 〈[u(r) − u(0)]2〉/2, where
u(r)=r−rp is the displacement of each vortex at r from its position
in the perfect lattice rp; see ref. 27). We find that B(r) grows as
ln(r/a0) in the dislocation-free Phase I. In Fig. 3c we plot the
result at 1.5 T. In 2D systems, this is the expected behaviour in
response to a scale-invariant disorder19. Next, we fit the data using
the Gaussian approximation GK(r)= e−K 2B(r)/2 (valid for Gaussian
disorder potentials) and the translational correlation function
GK(r) (shown in Fig. 3a). A comparison reveals a very good
agreement (Fig. 3c). Therefore, all three independent observations
(local vortex density fluctuations, logarithmic growth of B(r), and
a Gaussian distribution of displacements) show that a random
potential drives the transition.

We next focus on the source of scale-invariant disorder
driving the transition. No thermally induced or quantum-induced
fluctuations are available to effectively disorder the vortex lattice
here. At 0.1 K, the transition induced by either thermal or quantum
fluctuations is expected to occur at a magnetic field extremely close
to Hc2 (see Supplementary Information). Our sample is amorphous
and compositionally homogeneous, both laterally and across its
thickness, thus, there is no quenched disorder from compositional
or structural changes. Instead, thickness variations given by the 1D

modulation emerge as the only source for quenched disorder. The
fundamental property of a scale-invariant potential V (r) is that it
has long-range logarithmic correlations6

〈[V (r)−V (r ′)]2〉=4σ J 2 ln(r− r ′) (1)

where J=µda20/2π is the elastic interaction strength (the magnetic
field dependence of the shear modulus µ is discussed in the
Supplementary Information) and σ is the disorder strength. In
Fig. 3d we calculate the spatial correlations of V (r) (the first
term in equation (1)) by taking V1D(r)= z(r)εL, where z(r) is
the topography and εL= (φ2

0/4πµ0λ
2) ln(λ/ξ) is the vortex energy

per unit length (see Supplementary Information for details). We
find that V1D(r) has long-range logarithmic correlations and short-
range smooth periodic correlations at integer multiples of w, which
are strongly damped at large distances. Thus, incommensurate 1D
correlation behaves as a quasi-random disorder potential.

We can write the free energy, F , following available
renormalization group (RG) theory for random disorder as6,7:

F=−2T ln(L)+ J ln(L)− J
√
σ/σc ln(L) (2)

where the thermal energy Eth, elastic energy Eel, and disorder energy
Edis (first to third terms, respectively) diverge logarithmically with
the system size L (ref. 6,7). Here, σc is the critical value for the
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disorder strength. In the ordered phase at low temperatures, the
relative strength between Eel and Edis determines the algebraical
decay of the translational correlations, with the exponent ηK in a
hexagonal solid given by19,21,

ηK=
2
3

[
T
J
+σ

]
(3)

Following the transition from power law to exponential decay
in GK(r), we found ηcK = 1/3 (Fig. 3a), which corresponds to
σc = 1/2. We now calculate the value of Edis produced by V1D(r)
(using equations (1) and (2)) and, independently, from the
power-law decay of the positional correlation functions (using
equations (2) and (3) with the ηK values from Fig. 3b). The results

obtained by the two methods are plotted in Fig. 3e (as blue and
green circles, respectively) together with Eel (black line) versus the
magnetic field. Note that Eth at 0.1 K is three orders of magnitude
smaller than both Eel and Edis, so it is negligible here. The agreement
between Edis determined from the exponents in the correlation
functions ηK (green circles) and from logarithmic correlations in
the 1D disorder potential (blue circles) is almost perfect. This
demonstrates that the 1D surface corrugation produces the disorder
through incommensuration and provides the energy scale for the
random field driving the transition in the 2D lattice. Figure 3e shows
that Edis begins to exceed Eel at the magnetic field where we start to
observe dislocations in the images.

Finally, let us discuss the critical behaviour of the observed
transitions. Our experiments closely reproduce the expected
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features for the zero-temperature phases as induced by random
disorder, with, in particular, positional fluctuations which increase
as ln(r) below the critical disorder and correlations that decay
exponentially for high disorder strengths. But here we find critical
values, σc=1/2 and ηcK=1/3, which are far above those proposed
in theory on the basis of RG calculations and models for random
quenched disorder (σc = 1/8 and ηcK = 1/12; refs 6,7,18,29). The
difference between random field theories and our experiments is the
presence of symmetry-breaking 1D modulation. A recent proposal
shows that the XY model with 1D symmetry-breaking disorder has
an increased order parameter at all temperatures3. An earlier work
also points out that correlations in the disorder potential enhance
the critical value of σ (ref. 21). This strongly suggests that the 1D
modulation, by breaking symmetry, modifies the screening of the
interactions among dislocations to enhance the critical point and
exponents with respect to random field theories.

Our experiments show that, in the presence of the 1D symmetry-
breaking disorder, the critical exponents increase to the values
expected by BKTHNY theory and the microscopic disordering
behaviour follows the sequence defined by the two-step thermal
melting transition, suggesting that this route for creating disorder
possibly describes more phenomena than just 2D thermal melting.
Inherent to this is the presence both of an intermediate hexatic
phase and bound dislocations in the ordered phase which are
not expected within random field models29,30. The question is:
why does our experiment follow BKTHNY theory? To answer
this question, one needs to calculate new critical points of the
order–disorder transition at zero temperature by taking into
account symmetry-breaking correlations within randomness and
their influence on the renormalization of the parameters involved
in the transition.

Overall, our data represent the first evidence that incommensu-
rate 1D modulation widens the stability range of the ordered phase
in 2D systems at zero temperature and raise questions that will
motivate a detailed examination of the effect of correlations in the
critical behaviour of disordered systems. 2D random environments
are usually unavoidable in different fields, such as colloids, optical
lattices, quantum condensates, 2D crystals or graphene. The experi-
mental approach presented here reveals an exciting new opportunity
to produce coherence in the presence of 1D symmetry-breaking
fields, as for example nematicity.

Methods
Sample. Our sample is an ultraflat amorphous thin film with a thickness, d , of
200 nm and a lateral size of 100 µm, fabricated by focused-ion-beam-induced
deposition (microscopy and nanofabrication methods are described in detail in
sections I and II of the Supplementary Information). d is far below Lc , the
characteristic length for vortex bending along the field direction; thus the vortex
lattice forms a 2D solid. The surface roughness is less than 1% of d and consists
of a smooth 1D modulation with period w=400 nm (Fig. 1b).

Low-temperature STM/S vortex imaging. We use scanning tunnelling
microscopy/spectroscopy (STM/S) to directly determine modifications in the
spatial correlations induced by disorder in the vortex lattice and visualize the
microscopic details of the ordered and disordered phases. The STM is carried out
in a dilution refrigerator and we work at temperatures low enough (0.1 K) to
neglect any temperature-induced effects. The sample is biased through W-based
contact pads, as shown in Fig. 1b (see Supplementary Information). The
order–disorder transition was followed by imaging up to thousands of individual
vortices from fields of 0.01 T up to just below Hc2, with the vortex density
increasing by a factor of 500. The average intervortex distance a0 decreases with
field, following the expected dependence in a triangular vortex lattice (shown in
Section III.3 of Supplementary Information).

Locked and floating vortex lattice. We modify the interaction strength between
the vortex lattice and the underlying disorder potential by increasing the magnetic
field (see Section V in Supplementary Information). At low magnetic fields, when
the lattice constant and disorder wavelength are similar (small p), commensurate
vortex configurations are observed, as expected, at matching conditions p=n or
n
√
3/2, with n an integer, and θ=30◦ or 0◦ degrees, respectively26. Generally,

commensurate lattices locked to the 1D potential are favoured, because they
lower the elastic energy of the lattice (Fig. 1). At higher fields, when the lattice
constant is much smaller than the 1D modulation, the increase in elastic energy
obtained by adjusting to the potential decreases and the lattice can show
incommensurate configurations forming a floating solid (Figs 1 and 2).

Calculation of the correlation functions of the vortex images. The
order–disorder transition has been characterized in real space through the
calculation of translational and orientational correlation functions, GK(r) and
G6(r), vortex density fluctuations ρ(r), and the relative displacement correlator
B(r) (see details for the calculation in Sections III.2, III.3 and VI of
Supplementary Information). GK(r) and G6(r) are directly obtained from the
individual vortex positions in the images. Peaks in the correlation functions
appear at the distances to nth nearest neighbours. Deviations with respect to the
perfect lattice produce a decay with r of the envelopes of GK(r) and G6(r) that
describes, respectively, weakening of translational and orientational correlations.
The crossovers between phases I (yellow), II (green) and III (magenta) are
determined as the fields at which the translational and orientational order
become short range and the exponents ηK and η6 reach the critical values (dotted
lines in Fig. 3b, see text for further details). The relative displacement correlator
B(r) is calculated by minimizing the averaged relative deviation between the
experimental vortex positions and the simulated perfect hexagonal lattice
(see Section VI in Supplementary Information for details of the calculations
and B(r) at different fields in Phase I). The evolution of the disordering process
in reciprocal space is shown in Section IV of the Supplementary Information
through the gradual changes of the height and width of the vortex lattice
Bragg peaks.

Received 10 January 2014; accepted 17 September 2014;
published online 26 October 2014

References
1. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109,

1492–1505 (1958).
2. Fisher, M., Weichman, P., Grinstein, G. & Fisher, D. Boson localization and the

superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).
3. Wehr, J., Niederberger, A., Sanchez-Palencia, L. & Lewenstein, M. Disorder

versus the Mermin–Wagner–Hohenberg effect: From classical spin systems to
ultracold atomic gases. Phys. Rev. B 74, 224448 (2006).

4. Billy, J. et al. Direct observation of Anderson localization of matter waves in a
controlled disorder. Nature 453, 891–894 (2008).

5. Sanchez-Palencia, L. & Lewenstein, M. Disordered quantum gases under
control. Nature Phys. 6, 87–95 (2010).

6. Nattermann, T., Scheidl, S., Korshunov, S. & Li, M. Absence of reentrance
in the two-dimensional XY-model with random phase shift. J. Phys. 5,
565–572 (1995).

7. Cha, M-C. & Fertig, H. A. Disorder-induced phase transition in
two-dimensional crystals. Phys. Rev. Lett. 74, 4867–4870 (1995).

8. Nelson, D. R. & Halperin, B. I. Dislocation-mediated melting in two
dimensions. Phys. Rev. B 19, 2457–2484 (1979).

9. Berezinskii, V. Destruction of long-range order in one-dimensional and
two-dimensional systems possessing a continuous symmetry group. II.
Quantum Systems. Sov. Phys. JETP 34, 610–616 (1972).

10. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions
in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

11. Carpentier, D. & Doussal, P. L. Melting of two-dimensional solids on
disordered substrates. Phys. Rev. Lett. 81, 1881–1884 (1998).

12. Nattermann, T. Scaling approach to pinning: Charge density waves and giant
flux creep in superconductors. Phys. Rev. Lett. 64, 2454–2457 (1990).

13. Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding,
and superfluid-superconducting films. Rev. Mod. Phys. 59, 1001–1066 (1987).

14. Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176,
250–254 (1968).

15. Hohenberg, P. Existence of long-range order in one and two dimensions.
Phys. Rev. 158, 383–366 (1967).

16. Halperin, B. I. & Nelson, D. R. Theory of two-dimensional melting. Phys. Rev.
Lett. 41, 121–124 (1978).

17. Young, A. P. Melting and the vector Coulomb gas in two dimensions.
Phys. Rev. B 19, 1855–1866 (1979).

18. Nelson, D. R. Reentrant melting in solid films with quenched random
impurities. Phys. Rev. B 27, 2902–2914 (1983).

19. LeDoussal, P. & Giamarchi, T. Dislocation and Bragg glasses in two
dimensions. Physica C C331, 233–240 (2000).

20. Guillamon, I. et al. Direct observation of stress accumulation and relaxation in
small bundles of superconducting vortices in tungsten thin films. Phys. Rev.
Lett. 106, 077001 (2011).

NATURE PHYSICS | VOL 10 | NOVEMBER 2014 | www.nature.com/naturephysics 855

© 2014 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3132
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3132

21. Korshunov, S. & Nattermann, T. Phase diagram of a Josephson junction array
with positional disorder. Physica B 222, 280–286 (1996).

22. SadrLahijany, M., Ray, P. & Stanley, H. Dispersity-driven melting transition in
two-dimensional solids. Phys. Rev. Lett. 79, 3206–3209 (1997).

23. Abanin, D., Lee, P. & Levitov, L. Randomness-induced XY ordering in a
graphene quantum Hall ferromagnet. Phys. Rev. Lett. 98, 156801 (2007).

24. Niederberger, A. et al. Disorder-induced order in two-component
Bose–Einstein condensates. Phys. Rev. Lett. 100, 030403 (2008).

25. Radzihovsky, L., Frey, E. & Nelson, D. Novel phases and reentrant melting of
two-dimensional colloidal crystals. Phys. Rev. E 63, 031503 (2001).

26. Martinoli, P. Static and dynamic interaction of superconducting vortices with a
periodic pinning potential. Phys. Rev. B 17, 1175–1194 (1978).

27. Giamarchi, T. & LeDoussal, P. Elastic theory of flux lattices in the presence of
weak disorder. Phys. Rev. B 52, 1242–1270 (1995).

28. Zahn, K., Lenke, R. & Maret, G. Two-stage melting of paramagnetic colloidal
crystals in two dimensions. Phys. Rev. Lett. 82, 2721–2724 (1999).

29. Carpentier, D. & Doussal, P. L. Topological transitions and freezing in XY
models and Coulomb gases with quenched disorder: Renormalization via
traveling waves. Nucl. Phys. B 588, 565–629 (2000).

30. Herrera-Velarde, S. & von Grünberg, H. H. Disorder-induced vs
temperature-induced melting of two-dimensional colloidal crystals. Soft Matter
5, 391–399 (2009).

Acknowledgements
This work was supported by the Spanish MINECO (FIS2011-23488,
MAT2011-27553-C02, MAT 2012-38318-C03, Consolider Ingenio Molecular
Nanoscience CSD2007-00010), the Comunidad de Madrid through program
Nanobiomagnet (S2009/MAT-1726) and by the Marie Curie Actions under the project
FP7-PEOPLE-2013-CIG-618321 and contract no. FP7-PEOPLE-2010-IEF-273105. We
acknowledge the technical support of UAM’s workshop SEGAINVEX.

Author contributions
I.G. carried out the experiment, analysis and interpretation of data. I.G. wrote the paper
together with H.S. and S.V. Samples were made and characterized by R.C. and J.S.
J.M.D.T. and M.R.I. supervised the sample design and fabrication. All authors discussed
the manuscript text and contributed to it.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to I.G.

Competing financial interests
The authors declare no competing financial interests.

856 NATURE PHYSICS | VOL 10 | NOVEMBER 2014 | www.nature.com/naturephysics

© 2014 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys3132
http://www.nature.com/doifinder/10.1038/nphys3132
http://www.nature.com/reprints
www.nature.com/naturephysics

	Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential
	Main
	Methods
	Sample.
	Low-temperature STM/S vortex imaging.
	Locked and floating vortex lattice.
	Calculation of the correlation functions of the vortex images.

	Acknowledgements
	References


