Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Annealed high-density amorphous ice under pressure

Abstract

The well-known expansion of water on cooling below 277 K is one of several peculiar properties that could signal a second critical point near 220 K and 0.1 GPa in pressure, deep in the supercooled liquid phase. Evidence for this would be a first-order transition line between two distinct supercooled liquids at temperatures below the critical point. As that lies below the minimum crystallization temperature, experimental tests have instead used low- and high-density amorphous ices—LDA and HDA—as proxies for the supercooled liquids. But numerous studies over the past decade have not yielded a clear consensus about the nature of the HDA/LDA transition. Here we identify a previously uncharacterized state of high-density amorphous ice obtained if HDA is annealed at pressures near 2 kbar. The transition between this annealed HDA and LDA is strikingly different from the behaviour found in earlier work, in a way that favours the two-liquid model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PT stability fields of LDA, HDA and VHDA.
Figure 2: Position of the first diffraction peak in high-density amorphous ices, as a function of P and T.
Figure 3: Behaviour of recovered high-density amorphous ices on warming at ambient pressure.

Similar content being viewed by others

References

  1. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    Article  ADS  Google Scholar 

  2. Debenedetti, P. G. Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003).

    Article  ADS  Google Scholar 

  3. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase-behaviour of metastable water. Nature 360, 324–328 (1992).

    Article  ADS  Google Scholar 

  4. Debenedetti, P. G. & Stanley, H. E. Supercooled and glassy water. Phys. Today 56, 40–46 (2003).

    Article  Google Scholar 

  5. Mishima, O. Reversible first-order transition between two H2O amorphs at 0.2 GPa and 135 K . J. Chem. Phys. 100, 5910–5912 (1994).

    Article  ADS  Google Scholar 

  6. Whalley, E., Klug, D. D. & Handa, Y. P. Entropy of amorphous ice. Nature 342, 782–783 (1989).

    Article  ADS  Google Scholar 

  7. Koza, M. M., Schober, H., Fischer, H. E., Hansen, T. & Fujara, F. Kinetics of the high- to low-density amorphous water transition. J. Phys. Condens. Matter 15, 321–332 (2003).

    Article  ADS  Google Scholar 

  8. Koza, M. M. et al. Nature of amorphous polymorphism of water. Phys. Rev. Lett. 94, 125506 (2005).

    Article  ADS  Google Scholar 

  9. Tulk, C. A. et al. Structural studies of several distinct metastable forms of amorphous ice. Science 297, 1320–1323 (2002).

    Article  ADS  Google Scholar 

  10. Guthrie, M. et al. Direct structural measurements of relaxation processes during transformations in amorphous ice. Phys. Rev. B 68, 184110 (2003).

    Article  ADS  Google Scholar 

  11. Mishima, O. Relationship between melting and amorphization of ice. Nature 384, 546–549 (1996).

    Article  ADS  Google Scholar 

  12. Mishima, O. & Suzuki, Y. Propagation of the polyamorphic transition of ice and the liquid–liquid critical point. Nature 419, 599–603 (2002).

    Article  ADS  Google Scholar 

  13. Guthrie, M., Tulk, C. A., Benmore, C. J. & Klug, D. D. A structural study of very high-density amorphous ice. Chem. Phys. Lett. 397, 335–339 (2004).

    Article  ADS  Google Scholar 

  14. Tse, J. S. et al. Investigation of the intermediate- and high-density forms of amorphous ice by molecular dynamics calculations and diffraction experiments. Phys. Rev. B 71, 214107 (2005).

    Article  ADS  Google Scholar 

  15. Loerting, T., Salzmann, C., Kohl, I., Mayer, E. & Hallbrucker, A. A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar. Phys. Chem. Chem. Phys. 3, 5355–5357 (2001).

    Article  Google Scholar 

  16. Klug, D. D. Dense ice in detail. Nature 420, 749–751 (2002).

    Article  ADS  Google Scholar 

  17. Giovambattista, N., Stanley, H. E. & Sciortino, F. Relation between the high density phase and the very-high density phase of amorphous solid water. Phys. Rev. Lett. 94, 107803 (2005).

    Article  ADS  Google Scholar 

  18. Klotz, S. et al. Nature of the polyamorphic transition in ice under pressure. Phys. Rev. Lett. 94, 025506 (2005).

    Article  ADS  Google Scholar 

  19. Klotz, S. et al. Reply to Comment on ‘Nature of the polyamorphic transition in ice under pressure’. Phys. Rev. Lett. 96, 149602 (2006).

    Article  ADS  Google Scholar 

  20. Besson, J. M. et al. Neutron powder diffraction above 10 GPa. Physica B 180–181, 907–910 (1992).

    Article  ADS  Google Scholar 

  21. Bosio, L., Johari, G. P. & Teixeira, J. X-ray study of high-density amorphous water. Phys. Rev. Lett. 56, 460–463 (1986).

    Article  ADS  Google Scholar 

  22. Floriano, M. A., Whalley, E., Svensson, E. C. & Sears, V. F. Structure of high-density amorphous ice by neutron-diffraction. Phys. Rev. Lett. 57, 3062–3064 (1986).

    Article  ADS  Google Scholar 

  23. Mishima, O., Calvert, L. D. & Whalley, E. Melting ice-I at 77 K and 10 kbar—a new method of making amorphous solids. Nature 310, 393–395 (1984).

    Article  ADS  Google Scholar 

  24. Martoňák, R., Donadio, D. & Parrinello, M. Polyamorphism of ice at low temperatures from constant-pressure simulations. Phys. Rev. Lett. 92, 225702 (2004).

    Article  ADS  Google Scholar 

  25. Loerting, T. et al. Amorphous ice: Stepwise formation of very-high-density amorphous ice from low-density amorphous ice at 125 K. Phys. Rev. Lett. 96, 025702 (2006).

    Article  ADS  Google Scholar 

  26. Andersson, O. Relaxation time of water’s high-density amorphous ice phase. Phys. Rev. Lett. 95, 205503 (2005).

    Article  ADS  Google Scholar 

  27. McMillan, P. F., Wilson, M., Daisenberger, D. & Machon, D. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nature Mater. 4, 680–684 (2005).

    Article  ADS  Google Scholar 

  28. Besson, J. M. et al. Structural instability in ice VIII under pressure. Phys. Rev. Lett. 78, 3141–3144 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Rousse for assistance with preliminary experiments, O. Mishima, D. D. Klug and M. M. Koza for supplementary information and comment, I. Kohl and T. Loerting for additional information about work in ref. 15, and A. M. Saitta, C. Salzmann, K. D. Refson, A. K. Soper and W. C. K. Poon for discussions. We acknowledge support from the UK Engineering and Physical Sciences Research Council, the ISIS Facility at the Rutherford Appleton Laboratory, the Swiss National Science Foundation and the Commission of the European Union (T.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard J. Nelmes or John S. Loveday.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelmes, R., Loveday, J., Strässle, T. et al. Annealed high-density amorphous ice under pressure. Nature Phys 2, 414–418 (2006). https://doi.org/10.1038/nphys313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing