Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperative coupling of ultracold atoms and surface plasmons

Abstract

Cooperative coupling between optical emitters and light fields is one of the outstanding goals in quantum technology. It is both fundamentally interesting for the extraordinary radiation properties of the participating emitters and has many potential applications in photonics. Although this goal has been achieved using high-finesse optical cavities, attention has turned to broadband, easy to build cavity-free approaches. Here we demonstrate cooperative coupling of ultracold atoms with surface plasmons propagating on a plane gold surface. While the atoms are moving towards the surface they are excited by an external laser pulse. The interaction between the excited atom fluorescence and surface plasmons is probed by detecting the photons emitted into the substrate when the plasmon excitations decay. A maximum Purcell factor of ηP = 4.9 is reached at an optimum distance of z = 250 nm from the surface. The coupling leads to the observation of a Fano-like resonance in the spectrum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic drawing of the experimental situation.
Figure 2: Radiation properties of a rubidium atom at a gold surface.
Figure 3: Measured photon numbers.
Figure 4: Measured spectrum.

Similar content being viewed by others

References

  1. Haroche, S. & Raimond, J-M. Exploring the Quantum: Atoms, Cavities, Photons (Oxford Univ. Press, 2006).

    Book  MATH  Google Scholar 

  2. Imamoglu, A. & Yamamoto, Y. Turnstile device for heralded single photons: Coulomb blockade of electron and hole tunneling in quantum confined p–i–n heterojunctions. Phys. Rev. Lett. 72, 210–213 (2011).

    Article  ADS  Google Scholar 

  3. Kim, J., Benson, O., Kan, H. & Yamamoto, Y. A single-photon turnstile device. Nature 397, 500–503 (1999).

    Article  ADS  Google Scholar 

  4. He, Y-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nature Nanotech. 8, 213–217 (2013).

    Article  ADS  Google Scholar 

  5. Englund, D. et al. Controlling the spontaneous emission rate of single quantum in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  ADS  Google Scholar 

  6. Yamamoto, Y. & Imamoglu, A. Mesoscopic Quantum Optics (Wiley, 1999).

    MATH  Google Scholar 

  7. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  8. Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

    Article  ADS  Google Scholar 

  9. Volz, T. et al. Ultrafast all-optical switching by single photons. Nature Photon. 6, 605–609 (2012).

    Article  ADS  Google Scholar 

  10. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  11. Neumeier, L. et al. Single-photon transistor in circuit quantum electrodynamics. Phys. Rev. Lett. 111, 063601 (2013).

    Article  ADS  Google Scholar 

  12. Kimble, H. J. Strong interactions of single atoms and photons in cavity qed. Phys. Scr. T 76, 127–137 (1998).

    Article  ADS  Google Scholar 

  13. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006).

    Article  ADS  Google Scholar 

  14. Benson, O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011).

    Article  ADS  Google Scholar 

  15. Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters. Preprint at http://arXiv.org/abs/1405.1661 (2014).

  16. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  17. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    Article  ADS  Google Scholar 

  18. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  19. Weber, W. H. & Eagen, C. F. Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. Opt. Lett. 4, 236–238 (1979).

    Article  ADS  Google Scholar 

  20. Pockrand, I. & Brillante, A. Nonradiative decay of excited molecules near a metal surface. Chem. Phys. Lett. 69, 499–504 (1980).

    Article  ADS  Google Scholar 

  21. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  ADS  Google Scholar 

  22. Tame, M. S. et al. Quantum plasmonics. Nature Phys. 9, 329–340 (2013).

    Article  ADS  Google Scholar 

  23. Amos, R. M. & Barnes, W. L. Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror. Phys. Rev. B 55, 7249–7254 (1997).

    Article  ADS  Google Scholar 

  24. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  ADS  Google Scholar 

  25. Andersen, M. L., Stobbe, S., Sørensen, A. S. & Lodahl, P. Strongly modified plasmons–matter interaction with mesoscopic quantum emitters. Nature Phys. 7, 215–218 (2010).

    Article  ADS  Google Scholar 

  26. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  ADS  Google Scholar 

  27. Huck, A., Kumar, S., Shakoor, A. & Andersen, U. L. Controlled coupling of a single nitrogen–vacancy center to a silver nanowire. Phys. Rev. Lett. 106, 096801 (2011).

    Article  ADS  Google Scholar 

  28. Bellessa, J., Bonnand, C. & Plenet, J. C. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett. 93, 036404 (2004).

    Article  ADS  Google Scholar 

  29. Dintinger, J., Klein, S., Bustos, F., Barnes, W. L. & Ebbesen, T. W. Strong coupling between surface plasmon–polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71, 035424 (2005).

    Article  ADS  Google Scholar 

  30. Vasa, P. et al. Coherent exciton-surface-plasmon–polariton interaction in hybrid metal-semiconductor nanostructures. Phys. Rev. Lett. 101, 116801 (2008).

    Article  ADS  Google Scholar 

  31. Hakala, T. K. et al. Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. Phys. Rev. Lett. 103, 053602 (2009).

    Article  ADS  Google Scholar 

  32. Gómez, D. E., Vernon, K. C., Mulvaney, P. & Davis, T. J. Surface plasmon mediated strong exciton–photon coupling in semiconductor nanocrystals. Nano Lett. 10, 274–278 (2010).

    Article  ADS  Google Scholar 

  33. Schwartz, T., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. Lett. 106, 196405 (2011).

    Article  ADS  Google Scholar 

  34. Aberra Guebrou, S. et al. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. Phys. Rev. Lett. 108, 066401 (2012).

    Article  ADS  Google Scholar 

  35. González-Tudela, A., Huidobro, P. A., Martín-Moreno, C. & García-Vidal, F. J. Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys. Rev. Lett. 110, 126801 (2013).

    Article  ADS  Google Scholar 

  36. Chang, D. E. et al. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 103, 123004 (2009).

    Article  ADS  Google Scholar 

  37. Murphy, B. & Hau, L. V. Electro-optical nanotraps for neutral atoms. Phys. Rev. Lett. 102, 033003 (2009).

    Article  ADS  Google Scholar 

  38. Gullans, M. et al. Nanoplasmonic lattices for ultracold atoms. Phys. Rev. Lett. 109, 235309 (2012).

    Article  ADS  Google Scholar 

  39. Righini, M., Zelenina, A. S., Girard, C. & Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys. 3, 477–480 (2007).

    Article  ADS  Google Scholar 

  40. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  41. Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007).

    Article  ADS  Google Scholar 

  42. Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

    Article  ADS  Google Scholar 

  43. Wilk, T. et al. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010).

    Article  ADS  Google Scholar 

  44. Juliá-Díaz, B., Graß, T., Dutta, O., Chang, D. E. & Lewenstein, M. Engineering p-wave interactions in ultracold atoms using nanoplasmonic traps. Nature Commun. 4, 2046 (2013).

    Article  ADS  Google Scholar 

  45. Chang, D. E., Cirac, J. I. & Kimble, H. J. Self-organization of atoms along a nanophotonic waveguide. Phys. Rev. Lett. 110, 113606 (2013).

    Article  ADS  Google Scholar 

  46. Thompson, J. D. et al. Coupling a single trapped atom to a nanoscale optical cavity. Science 340, 1202–1205 (2013).

    Article  ADS  Google Scholar 

  47. Goban, A. et al. Atom–light interactions in photonic crystals. Nature Commun. 5, 3808 (2014).

    Article  ADS  Google Scholar 

  48. Esslinger, T., Weidemüller, M., Hemmerich, A. & Hänsch, T. W. Surface-plasmon mirror for atoms. Opt. Lett. 18, 450–452 (1993).

    Article  ADS  Google Scholar 

  49. Feron, S. et al. Reflection of metastable neon atoms by a surface plasmon wave. Opt. Commun. 102, 83–88 (1993).

    Article  ADS  Google Scholar 

  50. Schneble, D., Hasuo, M., Anker, T., Pfau, T. & Mlynek, J. Detection of cold metastable atoms at a surface. Rev. Sci. Instrum. 74, 2685–2689 (2003).

    Article  ADS  Google Scholar 

  51. Stehle, C. et al. Plasmonically tailored micropotentials for ultracold atoms. Nature Photon. 5, 494–498 (2011).

    Article  ADS  Google Scholar 

  52. Hohenau, A. et al. Surface plasmon leakage radiation microscopy at the diffraction limit. Opt. Express 19, 25749–25762 (2011).

    Article  ADS  Google Scholar 

  53. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

    Book  Google Scholar 

  54. Chance, R. R., Prock, A. & Silbey, R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978).

    Google Scholar 

  55. Sipe, J. E. The dipole antenna problem in surface physics: A new approach. Surf. Sci. 105, 489–504 (1981).

    Article  ADS  Google Scholar 

  56. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007).

    Article  ADS  Google Scholar 

  57. Tanji-Suzuki, H. et al. Interaction between atomic ensembles and optical resonators: Classical description. Adv. At. Mol. Opt. Phys. 60, 201–237 (2011).

    Article  ADS  Google Scholar 

  58. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  ADS  MATH  Google Scholar 

  59. Fan, P., Yu, Z., Fan, S. & Brongersma, M. L. Optical Fano resonance of an individual semiconductor nanostructure. Nature Mater. 13, 471–475 (2014).

    Article  ADS  Google Scholar 

  60. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions, Basic Processes and Applications (Wiley, 1992).

    Book  Google Scholar 

  61. Choquette, J. J., Marzlin, K-P. & Sanders, B. C. Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface. Phys. Rev. A 82, 023827 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.Z. gratefully acknowledges financial support by the DFG. C.S. was supported by Carl-Zeiss Stiftung Baden-Württemberg. S.S. is indebted to the Baden-Württemberg Stiftung for the financial support of this research project by the Eliteprogramm for Postdocs.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. provided the laboratory and experimental facilities, C.S. made the measurements, and S.S. analysed the data and wrote the paper.

Corresponding author

Correspondence to Sebastian Slama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stehle, C., Zimmermann, C. & Slama, S. Cooperative coupling of ultracold atoms and surface plasmons. Nature Phys 10, 937–942 (2014). https://doi.org/10.1038/nphys3129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing