Letter | Published:

Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor

Nature Physics volume 10, pages 835839 (2014) | Download Citation

Abstract

Methods to generate spin-polarized electronic states in non-magnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices1. This is generally accepted to require breaking global structural inversion symmetry1,2,3,4,5. In contrast, here we report the observation from spin- and angle-resolved photoemission spectroscopy of spin-polarized bulk states in the centrosymmetric transition-metal dichalcogenide WSe2. Mediated by a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localized6, we show how spin splittings up to 0.5 eV result, with a spin texture that is strongly modulated in both real and momentum space. Through this, our study provides direct experimental evidence for a putative locking of the spin with the layer and valley pseudospins in transition-metal dichalcogenides7,8, of key importance for using these compounds in proposed valleytronic devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

  2. 2.

    et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

  3. 3.

    et al. Emergent quantum confinement at topological insulator surfaces. Nature Commun. 3, 1159 (2012).

  4. 4.

    et al. Detection of Berry’s phase in a bulk Rashba semiconductor. Science 342, 1490–1493 (2013).

  5. 5.

    et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

  6. 6.

    , , , & Hidden spin polarization in inversion-symmetric bulk crystals. Nature Phys. 10, 387–393 (2014).

  7. 7.

    et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nature Commun. 4, 2053 (2013).

  8. 8.

    et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nature Phys. 10, 130–134 (2014).

  9. 9.

    & Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

  10. 10.

    & Engineering three-dimensional topological insulators in Rashba-type spin–orbit coupled heterostructures. Nature Commun. 4, 1972 (2013).

  11. 11.

    , , , & Engineering topological surface states and giant Rashba spin splitting in BiTeI/Bi2Te3 heterostructures. Sci. Rep. 4, 3841 (2014).

  12. 12.

    & Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

  13. 13.

    , , & Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

  14. 14.

    et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007).

  15. 15.

    et al. Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. Phys. Rev. Lett. 107, 096802 (2011).

  16. 16.

    et al. Quasiparticle dynamics and spin–orbital texture of the SrTiO3 two-dimensional electron gas. Nature Commun. 5, 3414 (2014).

  17. 17.

    Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

  18. 18.

    et al. Giant Rashba-type spin splitting in bulk BiTeI. Nature Mater. 10, 521–526 (2011).

  19. 19.

    , , , & Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  20. 20.

    , , & Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

  21. 21.

    , , , & Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

  22. 22.

    et al. Occupied and unoccupied electronic band structure of WSe2. Phys. Rev. B 55, 10400–10411 (1997).

  23. 23.

    et al. Layer-by-layer entangled spin–orbital texture of the topological surface state in Bi2Se3. Phys. Rev. Lett. 110, 216401 (2013).

  24. 24.

    et al. Photoelectron spin–polarization control in the topological insulator Bi2Se3. Phys. Rev. Lett. 112, 076802 (2014).

  25. 25.

    et al. Enhanced Rashba spin–orbit splitting in Bi/Ag(111) and Pb/Ag(111) surface alloys from first principles. Phys. Rev. B 75, 195414 (2007).

  26. 26.

    et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys. 9, 563–569 (2013).

  27. 27.

    et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotech. 8, 634–638 (2013).

  28. 28.

    , , , & Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

  29. 29.

    , , & Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

  30. 30.

    et al. A spin- and angle-resolving photoelectron spectrometer. Rev. Sci. Instrum. 81, 035104 (2010).

  31. 31.

    et al. WIEN2K package, Version 10.1 (2010);

  32. 32.

    et al. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001).

  33. 33.

    et al. Wannier90: A tool for obtaining maximally localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

  34. 34.

    et al. WIEN2WANNIER: From linearized augmented plane waves to maximally localized Wannier functions. Comput. Phys. Commun. 181, 1888–1895 (2010).

Download references

Acknowledgements

We gratefully acknowledge support from the Engineering and Physical Sciences Research Council, UK, the VILLUM foundation, the Calipso program, TRF-SUT Grant RSA5680052 and NANOTEC, Thailand through the CoE Network. P.D.C.K. acknowledges support from the Royal Society through a University Research Fellowship. M.S.B. was supported by a Grant-in-Aid for Scientific Research (S) (No. 24224009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The experiments at the MAX IV Laboratory were made possible through funding from the Swedish Research Council and the Knut and Alice Wallenberg Foundation.

Author information

Affiliations

  1. SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY16 9SS, UK

    • J. M. Riley
    • , L. Bawden
    •  & P. D. C. King
  2. Department of Physics, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway

    • F. Mazzola
    • , C. Granerød
    •  & J. W. Wells
  3. Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark

    • M. Dendzik
    • , M. Michiardi
    •  & Ph. Hofmann
  4. Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan

    • T. Takayama
    •  & H. Takagi
  5. Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany

    • T. Takayama
    •  & H. Takagi
  6. MAX IV Laboratory, Lund University, P. O. Box 118, 221 00 Lund, Sweden

    • M. Leandersson
    •  & T. Balasubramanian
  7. Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK

    • M. Hoesch
    •  & T. K. Kim
  8. School of Physics, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand

    • W. Meevasana
  9. NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

    • W. Meevasana
  10. Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan

    • M. S. Bahramy
  11. RIKEN center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

    • M. S. Bahramy

Authors

  1. Search for J. M. Riley in:

  2. Search for F. Mazzola in:

  3. Search for M. Dendzik in:

  4. Search for M. Michiardi in:

  5. Search for T. Takayama in:

  6. Search for L. Bawden in:

  7. Search for C. Granerød in:

  8. Search for M. Leandersson in:

  9. Search for T. Balasubramanian in:

  10. Search for M. Hoesch in:

  11. Search for T. K. Kim in:

  12. Search for H. Takagi in:

  13. Search for W. Meevasana in:

  14. Search for Ph. Hofmann in:

  15. Search for M. S. Bahramy in:

  16. Search for J. W. Wells in:

  17. Search for P. D. C. King in:

Contributions

J.M.R., F.M., M.D., M.M., L.B., C.G., W.M., J.W.W. and P.D.C.K. measured the experimental data. J.M.R., F.M., J.W.W. and P.D.C.K. analysed the data. M.S.B. performed the electronic structure calculations. T.T. grew the samples. M.L. and T.B. maintained the spin-ARPES end stations and M.H. and T.K.K. maintained the ARPES end stations, respectively, and provided experimental support. P.D.C.K., J.W.W., M.S.B., P.H. and H.T. provided the project infrastructure. All authors discussed the results and their interpretation. P.D.C.K. and J.M.R. wrote the manuscript with input and discussion from all co-authors. P.D.C.K. was responsible for overall project planning and direction.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to P. D. C. King.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3105

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing