Article | Published:

Observation of self-amplifying Hawking radiation in an analogue black-hole laser

Nature Physics volume 10, pages 864869 (2014) | Download Citation

Abstract

By a combination of quantum field theory and general relativity, black holes have been predicted to emit Hawking radiation. Observation from an actual black hole is, however, probably extremely difficult, so attention has turned to analogue systems in the search for such radiation. Here, we create a narrow, low density, very low temperature atomic Bose–Einstein condensate, containing an analogue black-hole horizon and an inner horizon, as in a charged black hole. We report the observation of Hawking radiation emitted by this black-hole analogue, which is the output of the black-hole laser formed between the horizons. We also observe the exponential growth of a standing wave between the horizons, which results from interference between the negative-energy partners of the Hawking radiation and the negative-energy particles reflected from the inner horizon. We thus observe self-amplifying Hawking radiation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973).

  2. 2.

    Black hole explosions? Nature 248, 30–31 (1974).

  3. 3.

    Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).

  4. 4.

    Particle emission rates from a black hole: Massless particles from an uncharged, non-rotating hole. Phys. Rev. D 13, 198–206 (1976).

  5. 5.

    & Black holes at the Large Hadron Collider. Phys. Rev. Lett. 87, 161602 (2001).

  6. 6.

    Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351–1353 (1981).

  7. 7.

    , , & Sonic analog of gravitational black holes in Bose–Einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000).

  8. 8.

    , & Analogue gravity from Bose–Einstein condensates. Class. Quantum Gravity 18, 1137–1156 (2001).

  9. 9.

    , & Bogoliubov theory of acoustic Hawking radiation in Bose–Einstein condensates. Phys. Rev. A 80, 043603 (2009).

  10. 10.

    , , & Resonant Hawking radiation in Bose–Einstein condensates. New J. Phys. 13, 063048 (2011).

  11. 11.

    & Event horizons and ergoregions in 3He. Phys. Rev. D 58, 064021 (1998).

  12. 12.

    & Hawking radiation in an electromagnetic waveguide? Phys. Rev. Lett. 95, 031301 (2005).

  13. 13.

    Hawking radiation in sonic black holes. Phys. Rev. Lett. 94, 061302 (2005).

  14. 14.

    , , & Hawking radiation from an acoustic black hole on an ion ring. Phys. Rev. Lett. 104, 250403 (2010).

  15. 15.

    & Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822–825 (2000).

  16. 16.

    A laboratory analogue of the event horizon using slow light in an atomic medium. Nature 415, 406–409 (2002).

  17. 17.

    & On slow light as a black hole analogue. Phys. Rev. D 68, 024008 (2003).

  18. 18.

    , & All-optical event horizon in an optical analog of a Laval nozzle. Phys. Rev. A 86, 063821 (2012).

  19. 19.

    , & Black holes and wormholes in spinor polariton condensates. Phys. Rev. B 84, 233405 (2011).

  20. 20.

    , , , & Observation of negative-frequency waves in a water tank: A classical analogue to the Hawking effect? New J. Phys. 10, 053015 (2008).

  21. 21.

    , , , & Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011).

  22. 22.

    et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

  23. 23.

    et al. Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105, 203901 (2010).

  24. 24.

    & Hawking radiation from ‘phase horizons’ in laser filaments? Phys. Rev. D 86, 064006 (2012).

  25. 25.

    , & Quantum vacuum radiation in optical glass. Phys. Rev. D 85, 084014 (2012).

  26. 26.

    & Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).

  27. 27.

    et al. Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010).

  28. 28.

    et al. Quantum simulation of the Klein paradox with trapped ions. Phys. Rev. Lett. 106, 060503 (2011).

  29. 29.

    et al. Quantum simulation of quantum field theories in trapped ions. Phys. Rev. Lett. 107, 260501 (2011).

  30. 30.

    & Quantum information transfer using photons. Nature Photon. 8, 356–363 (2014).

  31. 31.

    et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

  32. 32.

    , & On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).

  33. 33.

    & Black hole lasers. Phys. Rev. D 59, 124011 (1999).

  34. 34.

    & in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology (eds Unruh, W. G. & Schutzhöld, R.) 229–245 (Lecture Notes in Physics, Vol. 718, Springer, 2007).

  35. 35.

    & Black hole lasers, a mode analysis. Phys. Rev. D 81, 084042 (2010).

  36. 36.

    & Black hole lasers in Bose–Einstein condensates. New J. Phys. 12, 095015 (2010).

  37. 37.

    & Saturation of black hole lasers in Bose–Einstein condensates. Phys. Rev. D 88, 125012 (2013).

  38. 38.

    , , , & Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes. Phys. Rev. A 78, 021603(R) (2008).

  39. 39.

    , , & Sonic black holes in dilute Bose–Einstein condensates. Phys. Rev. A 63, 023611 (2001).

  40. 40.

    , & Quantum de Laval nozzle: Stability and quantum dynamics of sonic horizons in a toroidally trapped Bose gas containing a superflow. Phys. Rev. A 76, 023617 (2007).

  41. 41.

    et al. Realization of a sonic black hole analog in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010).

  42. 42.

    , , , & Phonon dispersion relation of an atomic Bose–Einstein condensate. Phys. Rev. Lett. 109, 195301 (2012).

  43. 43.

    et al. Planck distribution of phonons in a Bose–Einstein condensate. Phys. Rev. Lett. 111, 055301 (2013).

  44. 44.

    , , & Quantum fluctuations around black hole horizons in Bose–Einstein condensates. Phys. Rev. A 85, 013621 (2012).

  45. 45.

    & Black-hole radiation in Bose–Einstein condensates. Phys. Rev. A 80, 043601 (2009).

  46. 46.

    et al. Acoustic white holes in flowing atomic Bose–Einstein condensates. New J. Phys. 13, 025007 (2011).

  47. 47.

    , , , & Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates. New J. Phys. 10, 103001 (2008).

  48. 48.

    , , , & Hawking radiation of massive modes and undulations. Phys. Rev. D 86, 064022 (2012).

  49. 49.

    , & Aspects of cosmic inflation in expanding Bose–Einstein condensates. New J. Phys. 7, 248 (2005).

  50. 50.

    Analogue model for an expanding universe. Gen. Relativ. Gravit. 37, 1549–1554 (2005).

  51. 51.

    , & Analogue cosmological particle creation: Quantum correlations in expanding Bose–Einstein condensates. Phys. Rev. D 82, 105018 (2010).

Download references

Acknowledgements

I thank R. Parentani, I. Carusotto, A. Ori and F. Michel for helpful discussions. This work is supported by the Russell Berrie Nanotechnology Institute and the Israel Science Foundation.

Author information

Affiliations

  1. Department of Physics, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel

    • Jeff Steinhauer

Authors

  1. Search for Jeff Steinhauer in:

Competing interests

The author declares no competing financial interests.

Corresponding author

Correspondence to Jeff Steinhauer.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3104

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing