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Avoiding catastrophic failure in correlated

networks of networks

Saulo D. S. Reis'?, Yanging Hu', Andrés Babino?, José S. Andrade Jr? Santiago Canals?,

Mariano Sigman®* and Hernan A. Makse'?3*

Networks in nature do not act inisolation, but instead exchange
information and depend on one another to function properly™3.
Theory has shown that connecting random networks may
very easily result in abrupt failures®-. This finding reveals an
intriguing paradox’®: if natural systems organize in intercon-
nected networks, how can they be so stable? Here we provide
a solution to this conundrum, showing that the stability of a
system of networks relies on the relation between the internal
structure of a network and its pattern of connections to other
networks. Specifically, we demonstrate that if interconnections
are provided by network hubs, and the connections between
networks are moderately convergent, the system of networks is
stable and robust to failure. We test this theoretical prediction
on two independent experiments of functional brain networks
(in task and resting states), which show that brain networks are
connected with a topology that maximizes stability according
to the theory.

The theory of networks of networks relies largely on unstructured
patterns of connectivity between networks>**. When two stable
networks are fully interconnected with one-to-one random
connections, such that every node in a network depends on a
randomly chosen node in the other network, small perturbations in
one network are amplified by the interaction between networks>S.
This process leads to cascading failures, which are thought to
underpin catastrophic outcomes in man-made infrastructures,
such as blackouts in power grids**.

By contrast, many stable living systems, including the brain’
and cellular networks'’, are organized in interconnected networks.
Random networks are very efficient mathematical constructs to
develop theory, but the majority of networks observed in nature
are correlated'"'?. Correlations, in turn, provide structure and are
known to influence the dynamical and structural properties of
interconnected networks, as has been recently shown"’.

Most natural networks form hubs, increasing the relevance of
certain nodes. This adds a degree of freedom to the system, in
determining whether hubs broadcast information to other networks
or, conversely, whether cross-network communication is governed
by nodes with less influence in their own network.

We develop a full theory for systems of structured networks,
identifying a structural communication protocol that ensures the
system of networks is stable (less susceptible to catastrophic failure)
and optimized for fast communication across the entire system. The
theory establishes concrete predictions of a regime of correlated
connectivity between the networks composing the system.

We test these predictions with two different systems of brain
connectivity based on functional magnetic resonance imaging
(fMRI) data. The brain organizes in a series of interacting
networks™', presenting a paradigmatic case study for a theory of
connected correlated networks. We show that for two independent
experiments of functional networks in task and resting states in
humans, the systems of brain networks organize optimally, as
predicted by the theory.

Our results provide a plausible explanation for the observation
that natural networks do not show frequent catastrophic failure
as expected by theory. They offer a specific theoretical prediction
of how structured networks should be interconnected to be
stable. And they demonstrate, using two examples of functional
brain connectivity, that the structure of cross-network connections
coincides with theoretical predictions of stability for different
functional architectures.

We present a theory based on a recursive set of equations to study
the cascading failure and percolation process for two correlated
interconnected networks. The theory is a generalization of an
analytical approach for single networks previously developed® to
study cascading behaviour in interconnected correlated networks
(analytic details in Supplementary Section I). Here we refer to the
most important aspects of the theory and the corresponding set
of predictions. The theory can be extended to n-interconnected
networks by following ref. 16.

We consider two interconnected networks, each one having
a power-law degree distribution characterized by exponent y,
P(ki,) ~ k7, valid up to a cutoff k,,,, imposed by their finite size.
Here k;, is the number of links of a node towards nodes in the same
network. This power law implies that a few nodes will be vastly
connected within the network (hubs) whereas the majority of nodes
will be weakly connected to other nodes in the network.

The structure between interconnected networks can be
characterized by two parameters: & and B (Fig. 1a). The parameter
o, defined as

koul ~ k(,; ( 1 )

where k,, is the degree of a node towards nodes in the other
network, determines the likelihood that hubs of each network are
also the principal nodes connecting both networks. For o > 0
the nodes in network A and B which connect both networks
will typically be hubs in A and B respectively (Fig. la, right
panels). Instead, for o < 0 the two networks will be connected
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Figure 1| Modelling degree-degree correlations between interconnected networks. a, Hubs (red nodes) and non-hubs (blue nodes) have kot outgoing
links (wiggly blue links) according to the parameter «. When a < O, the outgoing links are more likely to be found attached to non-hub nodes. When a > 0O,
hubs are favoured over non-hub nodes. Nodes from different networks are connected according to 8. When 8 > 0O, nodes with similar degree prefer to
connect between themselves, and when B <0, nodes connect disassortatively. For simplicity we exemplify the outgoing links emanating from only a few
nodes in network A according to («, 8). b, Conditional mode of failure: a node fails every time it becomes disconnected from the largest component of its
own network, or loses all its outgoing links. All stable nodes have at least one outgoing link. We exemplify only one cascading path for simplicity. In reality,
we investigate the cascading produced by removal of 1—p nodes from both networks. With the failure of the hub indicated in the figure (Stage 1), all its
non-hub neighbours also fail because they become isolated from the giant component in A (Stage 2). In Stage 3 the upper hub from network B fails, owing
to the conditional interaction, because it loses connectivity with network A even though it is still connected in B. With the failure of this second hub all its
non-hub neighbours become isolated, leading to their failure (Stage 4). This leads to a further removal of the second outgoing link and the cascading failure
propagates back to network A (Stage 5). Because no more nodes become isolated, the cascading failure stops with the mutual giant component shown in
Stage 5. At this point we measure the fraction of nodes in the giant component of A and B. ¢, Redundant interaction: the failure of a node only leads to
further failure if its removal isolates its neighbours in the same network. The failure of the hub (Stage 1) does not propagate the damage to the other
network (Stage 2 and 3) and therefore there is no cascading in this interaction. We measure the fraction of nodes in the mutually connected giant
component. We note that nodes can be stable even if they do not have outgoing links, as long as they belong to the mutually connected component.

Thus, the mutually connected giant component may contain nodes which are not part of the single giant component of one of the networks, as shown in

Stage 3, network A.

preferentially by nodes of low degree within each network (Fig. 1a,
left panels).

The parameter B defines the indegree-indegree internetwork
correlations as'"*?:

ki ~Ki, (2)
where k" is the average indegree of the nearest neighbours of
a node in the other network. It determines the convergence of
connections between networks—that is, the likelihood that a link
connecting networks A and B coincides in the same type of node.
Intuitively, equations (1) and (2) can be seen as a compromise
between redundancy and reach of connections between both
networks. For > 0 connections between networks are convergent
(assortative, Fig. 1a, top panels), whereas for 8 < 0 they are divergent
(disassortative, Fig. 1a, bottom panels). Uncorrelated networks have
a=0and 8=0.

We analyse how the system of two correlated networks breaks
down after random failure (random attack) of a fraction 1 —p
of nodes for different patterns of between-network connectivity
characterized by (o, ). We adopt the conventional percolation
criterion of stability and connectivity measuring how the largest
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connected component breaks down following the attack’. In classic
percolation of single networks, two nodes of a network are randomly
linked with probability p (ref. 17). For low p, the network is
fragmented into subextensive components. Percolation theory of
random networks demonstrates that as p increases, there is a
critical phase transition in which a single extensive cluster or giant
component spans the system (the critical p is referred to as p.).

A robust notion of stability in a system of networks can be
obtained by identifying p. at which a cohesive mutually connected
network breaks down into disjoint subcomponents under different
forms of attack. Network topologies with low p. are robust, as this
indicates that the majority of nodes ought to be removed to break it
down. In contrast, high values of p. are indicative of a fragile network
which breaks down by removing only a few nodes.

Here we analyse two qualitatively different manners in which the
networks interact and propagate failure. In one mode (conditional
interaction, Fig. 1b) a node in network B cannot function (and hence
is removed) if it loses all connectivity with network A after the
attack’. In the second condition (redundant interaction, Fig. 1c) a
node in network B may survive even if it is completely decoupled
from network A, if it remains attached to the largest component
of network B (ref. 4). To understand why these two responses to
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Figure 2 | Stability phase diagram of p_(«, 8) for conditional and redundant failure. Percolation threshold p.(«, B) predicted by theory for coupled
networks for generic values y =2.5 and kmax =100 in conditional interaction (a) and redundant interaction (b). We use a bounded power law for closer
comparison with experimental data. For a given system, the results are independent of a large enough cutoff. For the conditional interaction the system is
more stable (low value of pc) when « <0 as well as for e ~1and g > 0, and exhibits a maximum in p. (unstable) close to @~ 0.25 and B <0. The
redundant interaction is instead more unstable for @ <0 and becomes stable for @ ~1and g > 0. Thus the best compromise between both modes of failure
is for values located in the upper-right quadrant (@ ~1, 8 > 0).
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Figure 3 | Analysis of interconnected functional brain networks. a, Clustering analysis to obtain the system of networks for resting-state data for a typical
subject out of 12 scans analysed. Left plot shows the fraction of nodes in the largest network versus T. We identify one percolation-like transition with the

jumpat Tc=

0.854. Strong ingoing links define the networks and correspond to T > T, (ref. 14). At T, the two largest networks, shown in the right panel in

the network representation and in the inset in the brain, merge. Interconnecting weak outgoing links are defined for 0.781<T < T, (plotted in grey). b, The
same clustering analysis is done to identify the interconnected network in dual task™. We show a typical scan out of a total of 16 subjects. The strong

ingoing links have T>T. =

0.914, and weak outgoing links are defined for 0.864 <T < T¢. ¢, Indegree ki, distribution for the resting-state experiment.

d, Indegree ki, distribution for the dual-task experiment. The black lines in c and d are fits to the data in accordance with the methods presented in

Supplementary Section IlA. The tail of the distributions follows P(kin) ~ k m,
kin for resting-state and dual-task experiments, according to equation (1). f,
to equation (2). The black lines in e and f are linear fits to the data.

failure are pertinent in real networks it helps to exemplify the
interaction between power and data networks. If electricity can
flow only through the cables of the power network, a node in the
data network unplugged from the power system shuts off and stops
functioning. This situation corresponds to two networks coupled
in a conditional manner; a case treated in ref. 3 considering one-
to-one random connections between networks. Consider instead
the case of a printer or any peripheral which can be plugged to
the main electricity network but can also receive power through a
USB cable from the computer. A node may still function even if it
is disconnected from the other network, if it remains connected to
its local network. This corresponds to the redundant interaction as
treated by ref. 4 in the unstructured case.
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with y =—2.85 and y =—2.25 respectively. e, Outdegree kot as a function of

, ki as a function of ki, for resting-state and dual-task experiments, according

We first investigate the stability of two interacting scale-free
networks for a value of y set arbitrarily to 2.5 and ky,, =100 in a
regime where each isolated network is stable and robust to attack'®.
The attack starts with the removal of a fraction of 1 — p nodes chosen
at random from both networks. This attack produces extra failures
of, for instance, nodes in B. In the case of conditional interaction:
if the nodes in B disconnect from the giant component of network
A or disconnect from the giant component of B. In the case of
redundant interaction: if the nodes in B disconnect from the giant
component of network A and the giant component of network B.
In the conditional mode, this process may lead to new failures in
network A producing a cascade if they lose connectivity in B. Other
nodes in A may also fail as they get disconnected from the giant
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Figure 4 | Stability phase diagram for brain networks. Percolation threshold p.(«, 8) obtained from theory for two coupled networks with power-law
exponents and cutoff given by the brain networks in resting state (a) and dual task (b). The left panels are for conditional interactions and the right panels
for redundant interactions. The white circles represent the data points of the real brain networks. They indicate that the brain structure results from a

compromise of optimal stability between both modes of failure.

component in A, and the cascading process iterates until converging
to a final configuration. By definition, only the conditional mode
may produce cascading effects, but not the redundant mode. The
theoretical analysis of this process leads to a set of recursive
equations (Supplementary Section I) that provides a stability phase
diagram for the critical percolation threshold p.(«, 8) under attack
in redundant and conditional failures for a given (y, k), as
seen in Fig. 2.

Figure 2 reveals that the relation between a networK’s internal
structure and the pattern of connection between networks critically
determines whether attacks lead to catastrophic cascading failures
(high p.) or not (low p.). For conditional interactions, the system
of networks is stable when « < 0 (indicated by low p.(c, B), left-
blue region in Fig. 2a) or for & 22 0.5 and S > 0 (light blue top-
right quadrant), and becomes particularly unstable for intermediate
values of 0 <« < 0.5 and 8 < 0. This result shows that the system
of networks is stable when the hubs are protected (¢ < 0) by
being isolated from network-network connectivity or when, in
contrast, the bulk of connectivity within and across networks is
sustained exclusively by a very small set of hubs (large «, B).
Intermediate configurations, where hubs interconnect with low-
degree nodes, are highly unstable because hubs can be easily
attacked via conditional interactions, and lead to catastrophic
cascading after attack. Similar unstable configurations appear in the
one-to-one random interconnectivity’.

When two networks interact in a redundant manner, the system
of networks is less vulnerable to attacks (Fig. 2b). This expected
result is manifested by the fact that, even for small values of p~0.1,
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the system of networks remains largely connected for any (c, 8).
The non-intuitive observation is that the relation between network
internal structure and the pattern of connection between networks
which optimizes stability differs from the conditional interaction
(Fig. 2a). In fact, o < 0 leads to the less stable configurations (larger
value of p. in Fig. 2b, red region), and the only region which
maximizes stability corresponds to high values of « and g > 0 (blue
region in Fig. 2b)—that is, an interaction where connection between
networks is highly redundant and carried only by a few hubs of
each network. Thus, the parameters that maximize stability for both
interactions lie in the region « ~1 and 8 > 0.

Systems of brain networks present an ideal candidate to examine
this theory for the following two reasons. First, local-brain networks
organize according to a power-law degree distribution'>*. Second,
some aspects of local function are independent of long-range global
interactions with other networks (as in the redundant interaction),
such as the processing of distinct sensory features, whereas other
aspects of local connectivity can be shut-down when connectivity to
other networks is shut down (as in conditional interaction), such as
integrative perceptual processing®'. Hence, the theory predicts that
to assure stability for both modes of dependencies, brain networks
ought to be connected with positive and high values of « and positive
values of .

Next, we examine this hypothesis for two independent functional
magnetic resonance imaging (fMRI) experiments: human resting-
state data obtained from the NYU public repository”? and human
dual-task data® previously used to investigate brain network
topology'***** (see Methods and Supplementary Section II for
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Table 1| Parameters characterizing the studied human brain networks.

Data set y o B Kmax
Human resting state 2.854+0.04 1.024+0.02 0.66+0.03 133
Human dual task 2.254+0.07 092+0.02 0.794+0.04 139

details). We first identify functional networks (resting state, Fig. 3a
and dual task, Fig. 3b) made of nodes connected by strong links—
that is, by highly correlated fMRI signals'. These networks are
interconnected by weak links (low correlation in the fMRI signal)
following the methods of ref. 14. The indegree distribution of the
system of networks follows a bounded power law (Fig. 3c,d and
Table 1) and the exponents o and B show high positive values for
both experiments (Fig. 3e,f and Table 1).

To examine whether these values are optimal for the specific
(V> kmax)-parameters of these networks, for each experiment, we
projected the measured values of @ and B to the theoretically
constructed stability phase diagram quantified by p.(«, ) in
the conditional and redundant modes (Fig. 4). Remarkably, the
experimental values of o and S (white circles) lie within the
relatively narrow region of parameter space that minimizes failure
for conditional and redundant interaction. Overall these results
demonstrate that brain networks tested under distinct mental states
share the topological features that confer stability to the system.

Our result hence provides a theoretical revision to the current
view that systems of networks are highly unstable. We show that for
structured networks, if the interconnections are provided by hubs
of the network (o > 0.5) and for moderate degrees of convergence
of internetwork connection (S > 0), the systems of network are
stable. This stability holds in the conditional interaction’ and in
a more robust topology of redundant interaction®. The redundant
condition is equivalent to stating that the system of networks merges
into a single network (ingoing and outgoing links are treated as
the same). Hence the condition of optimality for this topology
equates to saying that the size of the giant component formed by
the connection of both networks is optimized. As a consequence,
the maximization of robustness for both conditions is equivalent
to maximizing robustness in the more conventional conditional
interaction, where links of one network are strictly necessary for
proper function of the other network, and a notion of information
flow and storage using the classic percolation theory definition of
the size of the maximal mutual component across both networks. In
other words, these parameters form a set of interacting nodes which
are maximally large in size and robust to failure.

The most natural metaphors for man-made systems of networks
are electricity (wires) and the Internet or voice connectivity (data).
A more direct analogue to this case in a living system such as
the brain would be the interaction between anatomic, metabolic
and vascular networks (wires) and their coupling to functional
correlations (data)®. Here instead we adopted the theory of
networks of networks to investigate the optimality of coupled
functional brain modules. The consistency between experimental
data and theoretical predictions even in this broader notion of
coupled networks is suggestive of the possible broad scope of
the theory, making it a candidate to study a wider range of
interconnected networks>.

Methods

Experimental analysis. The interdependent functional brain networks are
constructed from fMRI data following the methods of ref. 14. First, the blood
oxygen level dependent (BOLD) signal from each brain voxel (node) is used to
construct the functional network topology based on standard methods'** using
the equal-time cross-correlation matrix, Cj, of the activity of pairs of voxels
(Supplementary Section II).
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The derivation of a binary graph from a continuous connectivity matrix
relies on a threshold T, where the links between two nodes (voxels) i and j are
occupied if T' < C; (refs 14,19), such as in bond percolation. A natural and
non-arbitrary choice of threshold can be derived from a clustering bond
percolation process. The size of the largest connected component of voxels as a
function of T reveals clear percolation-like transitions' in the two data sets,
identified by the jumps in the size of the largest component in Fig. 3a,b. The
emergent networks in resting state correspond to the medial prefrontal cortex,
posterior cingulate and lateral temporoparietal regions, all of them part of the
default mode network (DMN) typically seen in resting state data?. In dual task,
as expected for an experiment involving visual and auditory stimuli and
bi-manual responses, the responsive regions include bilateral visual
occipito-temporal cortices, bilateral auditory cortices, motor, premotor and
cerebellar cortices, and a large-scale bilateral parieto-frontal structure.

Scaling of correlations in the brain. We identify functional networks (see

Fig. 3a,b right panels) made of nodes connected by strong links (strong BOLD
signal correlation C;) which are interconnected by weak links (weak BOLD signal
correlation)'*?*. Statistical analysis based on standard maximum likelihood and
KS methods® (Supplementary Section ITA) yield the values of the indegree
exponents of each functional brain network: y =2.8540.04 and k,,,, =133 for
resting state and y =2.2540.07, k., =139 for dual task (Fig. 3c,d). The obtained
exponents o show high positive values for both experiments: « =1.02+0.02 and
0.9240.02 for resting-state and dual-task data, respectively (Fig. 3e). The
internetwork connections show positive exponents for both systems:
B=0.66+0.03 and B=0.79£0.04 for resting state and dual task,

respectively (Fig. 3f).

Hence, in accordance with the predictions of the theory, these two
interdependent brain networks derived from qualitatively distinct mental states
(resting states and strong engagement in a task which actively coordinates visual,
auditory and motor function) show consistently high values of « and positive
values of 8. Figure 4 shows the theoretical phase diagram p.(«,8) in conditional
and redundant modes calculated for coupled networks with the experimental
values y =2.25 and 2.85. Left panels show the prediction of p.(«, 8) in the
conditional mode of failure and right panels correspond to the redundant mode.
The experimental («, B) are shown as white circles lying in stable regions of the
phase diagram (low p.). Interestingly, the convergence of internetwork
connections, S, is slightly higher under task conditions, adding a new degree of
freedom to the system of networks, the dynamic allocation of functional
connections governed by context-dependent processes such as attention or
learning for the case of brain networks. Further research is planned to investigate
the neuronal mechanisms underlying internetwork communication routines
specified by B.
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