Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum criticality of topological phase transitions in three-dimensional interacting electronic systems

Abstract

Topological phase transitions in condensed matter systems accompany emerging singularities of the electronic wavefunction, often manifested by gap-closing points in momentum space. In conventional topological insulators in three dimensions, the low-energy theory near the gap-closing point can be described by relativistic Dirac fermions coupled to the long-range Coulomb interaction; hence, the quantum critical point of topological phase transitions provides a promising platform to test the intriguing predictions of quantum electrodynamics. Here we discover a class of quantum critical phenomena in topological materials for which either the inversion symmetry or time-reversal symmetry can be broken. At the quantum critical point, the emerging low-energy fermions, dubbed the anisotropic Weyl fermions, show both relativistic and Newtonian dynamics simultaneously. The interplay between the anisotropic dispersion and the Coulomb interaction brings about a screening phenomenon distinct from the conventional Thomas–Fermi screening in metals and logarithmic screening in Dirac fermions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generic phase diagram for topological phase transitions in 3D systems lacking either time-reversal symmetry or inversion symmetry.
Figure 2: Feynman diagram for quantum corrections and the resulting renormalization group flow.
Figure 3: Distribution of the screening charge induced by a charged impurity in the non-interacting anisotropic Weyl fermion.

Similar content being viewed by others

References

  1. Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 1999).

    MATH  Google Scholar 

  2. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  3. Xu, C. Unconventional quantum critical points. Int. J. Mod. Phys. B 26, 1230007 (2012).

    Article  ADS  Google Scholar 

  4. Wen, X. G. Topological order: From long-range entangled quantum matter to a unified origin of light and electrons. ISRN Condens. Matter Phys. 2013, 198710 (2013).

    Article  Google Scholar 

  5. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  6. Ueda, K. et al. Variation of charge dynamics in the course of metal–insulator transition for pyrochlore type Nd2Ir2O7 . Phys. Rev. Lett. 109, 136402 (2012).

    Article  ADS  Google Scholar 

  7. Balents, L. Viewpoint: Weyl electrons kiss. Physics 4, 36 (2011).

    Article  Google Scholar 

  8. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  9. Hosur, P., Parameswaran, S. A. & Vishwanath, A. Charge transport in Weyl semimetals. Phys. Rev. Lett. 108, 046602 (2012).

    Article  ADS  Google Scholar 

  10. Isobe, H. & Nagaosa, N. Theory of a quantum critical phenomenon in a topological insulator: (3 + 1)-dimensional quantum electrodynamics in solids. Phys. Rev. B 86, 165127 (2012).

    Article  ADS  Google Scholar 

  11. Isobe, H. & Nagaosa, N. Renormalization group study of electromagnetic interaction in multi-Dirac-node systems. Phys. Rev. B 87, 205138 (2013).

    Article  ADS  Google Scholar 

  12. Goswami, P. & Chakravarty, S. Quantum criticality between topological and band insulators in 3 + 1 dimensions. Phys. Rev. Lett. 107, 196803 (2011).

    Article  ADS  Google Scholar 

  13. Luttinger, J. M. Quantum theory of cyclotron resonance in semiconductors: General theory. Phys. Rev. 102, 1030–1041 (1956).

    Article  ADS  Google Scholar 

  14. Murakami, S., Nagaosa, N. & Zhang, S-C. SU(2) non-Abelian holonomy and dissipationless spin current in semiconductors. Phys. Rev. B 69, 235206 (2004).

    Article  ADS  Google Scholar 

  15. Moon, E-G., Xu, C., Kim, Y. B. & Balents, L. Non-Fermi-liquid and topological states with strong spin–orbit coupling. Phys. Rev. Lett. 111, 206401 (2013).

    Article  ADS  Google Scholar 

  16. Yang, B-J. et al. Theory of topological quantum phase transitions in 3D noncentrosymmetric systems. Phys. Rev. Lett. 110, 086402 (2013).

    Article  ADS  Google Scholar 

  17. Murakami, S. & Kuga, S-i. Universal phase diagrams for the quantum spin Hall systems. Phys. Rev. B 78, 165313 (2008).

    Article  ADS  Google Scholar 

  18. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    Article  ADS  Google Scholar 

  19. Bahramy, M. S., Yang, B-J., Arita, R. & Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nature Commun. 3, 679 (2012).

    Article  ADS  Google Scholar 

  20. Xi, X. et al. Signatures of a pressure-induced topological quantum phase transition in BiTeI. Phys. Rev. Lett. 111, 155701 (2013).

    Article  ADS  Google Scholar 

  21. Son, D. T. Quantum critical point in graphene approached in the limit of infinitely strong Coulomb interaction. Phys. Rev. B 75, 235423 (2007).

    Article  ADS  Google Scholar 

  22. Abrikosov, A. A. Gapless state of bismuth-type semimetals. J. Low. Temp. Phys. 8, 315–338 (1972).

    Article  ADS  Google Scholar 

  23. Kotov, V. N., Pereira, V. M. & Uchoa, B. Polarization charge distribution in gapped graphene: Perturbation theory and exact diagonalization analysis. Phys. Rev. B 78, 075433 (2008).

    Article  ADS  Google Scholar 

  24. Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castro Neto, A. H. Electron–electron interactions in graphene: Current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012).

    Article  ADS  Google Scholar 

  25. Biswas, R. R., Sachdev, S. & Son, D. T. Coulomb impurity in graphene. Phys. Rev. B 76, 205122 (2007).

    Article  ADS  Google Scholar 

  26. Shankar, R. Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129–192 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the Japan Society for the Promotion of Science (JSPS) through the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), and Grant-in-Aids for Scientific Research (Kiban (S), No. 24224009) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). B-J.Y. and N.N. greatly appreciate the stimulating discussions with A. Aharony, O. Entin-Wohlman, M. Hermele and M.A. Cazalilla. E-G.M. is grateful for invaluable discussion with L. Balents, M. Metlitski and C. Xu and supported by the MRSEC Program of the National Science Foundation under Award No. DMR 1121053. H.I. is supported by a Grant-in-Aid for JSPS Fellows.

Author information

Authors and Affiliations

Authors

Contributions

N.N. conceived the original ideas. B-J.Y., E-G.M. and H.I. performed the calculations. All authors analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Bohm-Jung Yang or Naoto Nagaosa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, BJ., Moon, EG., Isobe, H. et al. Quantum criticality of topological phase transitions in three-dimensional interacting electronic systems. Nature Phys 10, 774–778 (2014). https://doi.org/10.1038/nphys3060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing