Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

One-dimensional topological edge states of bismuth bilayers

This article has been updated

Abstract

The hallmark of a topologically insulating state of matter in two dimensions protected by time-reversal symmetry is the existence of chiral edge modes propagating along the perimeter of the sample. Among the first systems predicted to be a two-dimensional topological insulator are bilayers of bismuth. Here we report scanning tunnelling microscopy experiments on bulk Bi crystals that show that a subset of the predicted Bi-bilayers’ edge states are decoupled from the states of the substrate and provide direct spectroscopic evidence of their one-dimensional nature. Moreover, by visualizing the quantum interference of edge-mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties consistent with strong suppression of backscattering as predicted for the propagating topological edge states.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Edges of Bi-bilayer islands on a Bi-crystal surface.
Figure 2: Spectroscopic mapping near the edge.
Figure 3: Quasi-particle interference within the edge channel.
Figure 4: Model of the Bi-bilayer 1D edge states.
Figure 5: Size-quantization effect in Bi edges.

Change history

  • 13 August 2014

    In the version of this Article originally published, the name of one of the authors contained a typographical error and should have read B. Andrei Bernevig. This error has now been corrected in all versions of the Article.

References

  1. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  Article  Google Scholar 

  2. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    ADS  Article  Google Scholar 

  3. Bernevig, B. A. & Zhang, S-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    ADS  Article  Google Scholar 

  4. Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin–orbit coupling. Phys. Rev. Lett. 97, 236805 (2006).

    ADS  Article  Google Scholar 

  5. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Article  Google Scholar 

  6. Bernevig, B. A., Hughes, T. L. & Zhang, S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    ADS  Article  Google Scholar 

  7. Fu, L., Kane, C. & Mele, E. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    ADS  Article  Google Scholar 

  8. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Phys. 5, 438–442 (2009).

    ADS  Article  Google Scholar 

  9. Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

    ADS  Article  Google Scholar 

  10. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    ADS  Article  Google Scholar 

  11. Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    ADS  Article  Google Scholar 

  12. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    ADS  Article  Google Scholar 

  13. Hanaguri, T., Igarashi, K., Kawamura, M., Takagi, H. & Sasagawa, T. Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3 . Phys. Rev. B 82, 081305 (2010).

    ADS  Article  Google Scholar 

  14. Cheng, P. et al. Landau quantization of topological surface states in Bi2Se3 . Phys. Rev. Lett. 105, 076801 (2010).

    ADS  Article  Google Scholar 

  15. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    ADS  Article  Google Scholar 

  16. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    ADS  Article  Google Scholar 

  17. Knez, I., Du, R-R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

    ADS  Article  Google Scholar 

  18. Nowack, K. C. et al. Imaging currents in HgTe quantum wells in the quantum spin Hall regime. Nature Mater. 12, 787–791 (2013).

    ADS  Article  Google Scholar 

  19. Spanton, E. M. et al. Images of edge current in InAs/GaSb quantum wells. Phys. Rev. Lett. 113, 026804 (2014).

    ADS  Article  Google Scholar 

  20. Hofmann, P. The surfaces of bismuth: Structural and electronic properties. Prog. Surf. Sci. 81, 191–245 (2006).

    ADS  Article  Google Scholar 

  21. Wada, M., Murakami, S., Freimuth, F. & Bihlmayer, G. Localized edge states in two-dimensional topological insulators: Ultrathin Bi films. Phys. Rev. B 83, 121310 (2011).

    ADS  Article  Google Scholar 

  22. Chen, M. et al. Molecular beam epitaxy of bilayer Bi(111) films on topological insulator Bi2Te3: A scanning tunneling microscopy study. Appl. Phys. Lett. 101, 81603 (2012).

    Article  Google Scholar 

  23. Cottin, M. C. et al. Anisotropic scattering of surface state electrons at a point defect on Bi(111). Appl. Phys. Lett. 98, 022108 (2011).

    ADS  Article  Google Scholar 

  24. Cottin, M. C. et al. Interplay between forward and backward scattering of spin–orbit split surface states of Bi(111). Nano Lett. 13, 2717–2722 (2013).

    ADS  Article  Google Scholar 

  25. Yang, F. et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett. 109, 016801 (2012).

    ADS  Article  Google Scholar 

  26. Kim, S. H. et al. Edge and interfacial states in a two-dimensional topological insulator: Bi(111) bilayer on Bi2Te2Se. Phys. Rev. B 89, 155436 (2014).

    ADS  Article  Google Scholar 

  27. Sabater, C. et al. Topologically protected quantum transport in locally exfoliated bismuth at room temperature. Phys. Rev. Lett. 110, 176802 (2013).

    ADS  Article  Google Scholar 

  28. Kotaka, H., Ishii, F., Saito, M., Nagao, T. & Yaginuma, S. Edge states of Bi nanoribbons on Bi substrates: First-principles density functional study. Jpn. J. Appl. Phys. 51, 025201 (2012).

    ADS  Article  Google Scholar 

  29. Koroteev, Y. et al. Strong spin–orbit splitting on Bi surfaces. Phys. Rev. Lett. 93, 046403 (2004).

    ADS  Article  Google Scholar 

  30. Koroteev, Y., Bihlmayer, G., Chulkov, E. & Blügel, S. First-principles investigation of structural and electronic properties of ultrathin Bi films. Phys. Rev. B 77, 045428 (2008).

    ADS  Article  Google Scholar 

  31. Seo, J. et al. Transmission of topological surface states through surface barriers. Nature 466, 343–346 (2010).

    ADS  Article  Google Scholar 

  32. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    ADS  Article  Google Scholar 

  33. Ast, C. & Höchst, H. Fermi surface of Bi(111) measured by photoemission spectroscopy. Phys. Rev. Lett. 87, 177602 (2001).

    ADS  Article  Google Scholar 

  34. Narayan, A., Rungger, I. & Sanvito, S. Topological surface states scattering in antimony. Phys. Rev. B 86, 201402 (2012).

    ADS  Article  Google Scholar 

  35. Chuang, F-C. et al. Tunable topological electronic structures in Sb(111) bilayers: A first-principles study. Appl. Phys. Lett. 102, 022424 (2013).

    ADS  Article  Google Scholar 

  36. Liu, Z. et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys. Rev. Lett. 107, 136805 (2011).

    ADS  Article  Google Scholar 

  37. Fu, L. & Kane, C. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    ADS  Article  Google Scholar 

  38. Teo, J., Fu, L. & Kane, C. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx . Phys. Rev. B 78, 045426 (2008).

    ADS  Article  Google Scholar 

  39. Ringel, Z., Kraus, Y. E. & Stern, A. Strong side of weak topological insulators. Phys. Rev. B 86, 045102 (2012).

    ADS  Article  Google Scholar 

  40. Qi, X-L., Hughes, T. L. & Zhang, S-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    ADS  Article  Google Scholar 

  41. Liu, Q., Liu, C-X., Xu, C., Qi, X-L. & Zhang, S-C. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).

    ADS  Article  Google Scholar 

  42. Beidenkopf, H. et al. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nature Phys. 7, 939–943 (2011).

    ADS  Article  Google Scholar 

  43. Delplace, P., Li, J. & Büttiker, M. Magnetic-field-induced localization in 2D topological insulators. Phys. Rev. Lett. 109, 246803 (2012).

    ADS  Article  Google Scholar 

  44. Cheianov, V. & Glazman, L. I. Mesoscopic fluctuations of conductance of a helical edge contaminated by magnetic impurities. Phys. Rev. Lett. 110, 206803 (2013).

    ADS  Article  Google Scholar 

  45. Li, X., Liu, H., Jiang, H., Wang, F. & Feng, J. Tuning topological edge states of Bi(111) bilayer film by edge adsorption. Nano Lett. 14, 2879–2883 (2014).

    ADS  Article  Google Scholar 

  46. Fu, L. & Kane, C. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 1–4 (2008).

    Google Scholar 

Download references

Acknowledgements

The work at Princeton and the Princeton Nanoscale Microscopy Laboratory was supported by the ARO MURI program W911NF-12-1-0461, DARPA-SPWAR Meso program N6601-11-1-4110, NSF-DMR1104612, NSF CAREER DMR-095242, ONR- N00014-11-1-0635, and NSF-MRSEC NSF-DMR0819860 programs. S.N-P. acknowledges support from the European Community through a Marie Curie fellowship (IOF 302937). The authors would like to thank F. Freimuth for providing the results of ab initio calculations and J. Seo and X. Dai for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

I.K.D., S.J., S.N-P. and A.Y. designed and carried out the STM measurements and their analysis on samples synthesized by H.J. and R.J.C. A.A., I.K.D. and B.B. performed model calculations and related analysis. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Ali Yazdani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1250 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drozdov, I., Alexandradinata, A., Jeon, S. et al. One-dimensional topological edge states of bismuth bilayers. Nature Phys 10, 664–669 (2014). https://doi.org/10.1038/nphys3048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3048

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing