The ionization of atoms and molecules by strong laser fields has become a core technique in modern laser physics. Now, the electrons emerging from ionized molecules are shown to exhibit a memory of the ionization process, resulting in a spatial phase that may influence the interpretation of imaging data.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Meckel, M. et al. Nature Phys. 10, 594–600 (2014).
Akagi, H. et al. Science 325, 1364–1367 (2009).
Holmegaard, L. et al. Nature Phys. 6, 428–432 (2010).
Eckle, P. et al. Nature Phys. 4, 565–570 (2008).
Huismans, Y. et al. Science 331, 61–64 (2011).
Blaga, C. I. et al. Nature 483, 194–197 (2012).
Wörner, H. J. et al. Science 334, 208–212 (2011).
Goreslavski, S., Paulus, G., Popruzhenko, S. & Shvetsov-Shilovski, N. Phys. Rev. Lett. 93, 233002 (2004).
Blaga, C. I. et al. Nature Phys. 5, 335–338 (2009).
Boguslavskiy, A. E. et al. Science 335, 1336–1340 (2012).
Boll, R. et al. Phys. Rev. A 88, 061402(R) (2013).
Hensley, C. J., Yang, J. & Centurion, M. Phys. Rev. Lett. 109, 133202 (2012).
Küpper, J. et al. Phys. Rev. Lett. 112, 083002 (2014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Küpper, J. Displaced creation. Nature Phys 10, 550–551 (2014). https://doi.org/10.1038/nphys3045
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3045