Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum coherence in photosynthesis for efficient solar-energy conversion

Subjects

Abstract

The crucial step in the conversion of solar to chemical energy in photosynthesis takes place in the reaction centre, where the absorbed excitation energy is converted into a stable charge-separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the near-unity quantum efficiency of this process is unknown. Here we elucidate the role of coherence in determining the efficiency of charge separation in the plant photosystem II reaction centre by comprehensively combining experiment (two-dimensional electronic spectroscopy) and theory (Redfield theory). We reveal the presence of electronic coherence between excitons as well as between exciton and charge-transfer states that we argue to be maintained by vibrational modes. Furthermore, we present evidence for the strong correlation between the degree of electronic coherence and efficient and ultrafast charge separation. We propose that this coherent mechanism will inspire the development of new energy technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The electronic structure of the PSII RC.
Figure 2: Experimental and calculated PSII RC real rephasing 2D spectra at 80 K.
Figure 3: Calculated dynamics of the site populations of the cofactors’ excited states and the primary CT state.

Similar content being viewed by others

References

  1. Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).

    Book  Google Scholar 

  2. Vos, M. H., Rappaport, F., Lambry, J-C., Breton, J. & Martin, J-L. Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363, 320–325 (1993).

    Article  ADS  Google Scholar 

  3. Parson, W. W. & Warshel, A. A density-matrix model of photosynthetic electron transfer with microscopically estimated vibrational relaxation times. Chem. Phys. 296, 201–216 (2004).

    Article  Google Scholar 

  4. Novoderezhkin, V. I., Yakovlev, A. G., Van Grondelle, R. & Shuvalov, V. A. Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: A Redfield theory approach. J. Phys. Chem. B 108, 7445–7457 (2004).

    Article  Google Scholar 

  5. Savikhin, S., Buck, D. R. & Struve, W. S. Oscillating anisotropies in a bacteriochlorophyll protein: Evidence for quantum beating between exciton levels. Chem. Phys. 223, 303–312 (1997).

    Article  Google Scholar 

  6. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    Article  ADS  Google Scholar 

  7. Zigmantas, D. et al. Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex. Proc. Natl Acad. Sci. USA 103, 12672–12677 (2006).

    Article  ADS  Google Scholar 

  8. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  ADS  Google Scholar 

  9. Calhoun, T. R. et al. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B Lett. 113, 16291–16295 (2009).

    Article  Google Scholar 

  10. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    Article  ADS  Google Scholar 

  11. Schlau-Cohen, G. S. et al. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nature Chem. 4, 389–395 (2012).

    Article  ADS  Google Scholar 

  12. Hildner, R., Brinks, D., Nieder, J. B., Cogdell, R. J. & van Hulst, N. F. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340, 1448–1451 (2013).

    Article  ADS  Google Scholar 

  13. Lee, H., Cheng, Y. C. & Fleming, G. R. Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science 316, 1462–1465 (2007).

    Article  ADS  Google Scholar 

  14. Westenhoff, S., Palecek, D., Edlund, P., Smith, P. & Zigmantas, D. Coherent picosecond exciton dynamics in a photosynthetic reaction center. J. Am. Chem. Soc. 134, 16484–16487 (2012).

    Article  Google Scholar 

  15. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).

    Article  ADS  Google Scholar 

  16. Cheng, Y. C. & Fleming, G. R. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60, 241–262 (2009).

    Article  ADS  Google Scholar 

  17. Schlau-Cohen, G. S., Dawlaty, J. M. & Fleming, G. R. Ultrafast multidimensional spectroscopy: Principles and applications to photosynthetic systems. IEEE J. Sel. Top. Quant. Electron. 18, 283–295 (2012).

    Article  ADS  Google Scholar 

  18. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    Article  ADS  Google Scholar 

  19. Umena, Y., Kawakami, K., Shen, J-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  ADS  Google Scholar 

  20. Kern, J. et al. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495 (2013).

    Article  ADS  Google Scholar 

  21. Diner, B. A. & Rappaport, F. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu. Rev. Plant Biol. 53, 551–580 (2002).

    Article  Google Scholar 

  22. Steffen, M. A., Lao, K. & Boxer, S. G. Dielectric asymmetry in the photosynthetic reaction center. Science 264, 810–816 (1994).

    Article  ADS  Google Scholar 

  23. Frenkel, J. On the transformation of light into heat in solids. I. Phys. Rev. 37, 17–44 (1931).

    Article  ADS  Google Scholar 

  24. Romero, E. et al. Mixed exciton-charge-transfer states in photosystem II: Stark spectroscopy on site-directed mutants. Biophys. J. 103, 185–194 (2012).

    Article  ADS  Google Scholar 

  25. Romero, E., van Stokkum, I. H. M., Novoderezhkin, V. I., Dekker, J. P. & van Grondelle, R. Two different charge separation pathways in photosystem II. Biochemistry 49, 4300–4307 (2010).

    Article  Google Scholar 

  26. Cheng, Y. C. & Fleming, G. R. Coherence quantum beats in two-dimensional electronic spectroscopy. J. Phys. Chem. A 112, 4254–4260 (2008).

    Article  Google Scholar 

  27. Kolli, A., Nazir, A. & Olaya-Castro, A. Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation. J. Chem. Phys. 135, 154112 (2011).

    Article  ADS  Google Scholar 

  28. Christensson, N., Kauffmann, H. F., Pullerits, T. & Mancal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012).

    Article  Google Scholar 

  29. Chin, A. W., Huelga, S. F. & Plenio, M. B. Coherence and decoherence in biological systems: Principles of noise-assisted transport and the origin of long-lived coherences. Phil. Trans. R. Soc. A 370, 3638–3657 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  30. Kolli, A., O’Reilly, E. J., Scholes, G. D. & Olaya-Castro, A. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. J. Chem. Phys. 137, 174109 (2012).

    Article  ADS  Google Scholar 

  31. Chin, A. W. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nature Phys. 9, 113–118 (2013).

    Article  ADS  Google Scholar 

  32. Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

    Article  ADS  Google Scholar 

  33. Butkus, V., Zigmantas, D., Valkunas, L. & Abramavicius, D. Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).

    Article  ADS  Google Scholar 

  34. Fassioli, F., Olaya-Castro, A. & Scholes, G. D. Coherent energy transfer under incoherent light conditions. J. Phys. Chem. Lett. 3, 3136–3142 (2012).

    Article  Google Scholar 

  35. Peterman, E. J. G., van Amerongen, H., van Grondelle, R. & Dekker, J. P. The nature of the excited state of the reaction center of photosystem II of green plants: A high-resolution fluorescence spectroscopy study. Proc. Natl Acad. Sci. USA 95, 6128–6133 (1998).

    Article  ADS  Google Scholar 

  36. Rätsep, M., Linnanto, J. & Freiberg, A. Mirror symmetry and vibrational structure in optical spectra of chlorophyll a. J. Chem. Phys. 130, 194501 (2009).

    Article  ADS  Google Scholar 

  37. Milota, F. et al. Vibronic and vibrational coherences in two-dimensional electronic spectra of supramolecular J-aggregates. J. Phys. Chem. A 117, 6007–6014 (2013).

    Article  Google Scholar 

  38. Ferretti, M. et al. The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy. Phys. Chem. Chem. Phys. 16, 9930–9939 (2014).

    Article  Google Scholar 

  39. Ishizaki, A. & Fleming, G. R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl Acad. Sci. USA 106, 17255–17260 (2009).

    Article  ADS  Google Scholar 

  40. Novoderezhkin, V. I., Dekker, J. P. & van Grondelle, R. Mixing of exciton and charge-transfer states in Photosystem II reaction centers: Modeling of Stark spectra with modified Redfield theory. Biophys. J. 93, 1293–1311 (2007).

    Article  ADS  Google Scholar 

  41. Novoderezhkin, V. I., Romero, E., Dekker, J. P. & van Grondelle, R. Multiple charge separation pathways in photosystem II: Modeling of transient absorption kinetics. Chem. Phys. Chem. 12, 681–688 (2011).

    Article  Google Scholar 

  42. Lewis, K. L. M. et al. Simulations of the two-dimensional electronic spectroscopy of the photosystem II reaction center. J. Phys. Chem. A 117, 34–41 (2013).

    Article  Google Scholar 

  43. Myers, J. A. et al. Two-dimensional electronic spectroscopy of the D1-D2-cyt b559 photosystem II reaction center complex. J. Phys. Chem. Lett. 1, 2774–2780 (2010).

    Article  Google Scholar 

  44. van Grondelle, R. & Novoderezhkin, V. I. Quantum design for a light trap. Nature 463, 614–615 (2010).

    Article  ADS  Google Scholar 

  45. Kwa, S. L. S., Newell, W. R., van Grondelle, R. & Dekker, J. P. The reaction center of photosystem II studied with polarized fluorescence spectroscopy. Biochim. Biophys. Acta 1099, 193–202 (1992).

    Article  Google Scholar 

  46. Brixner, T., Mancal, T., Stiopkin, I. V. & Fleming, G. R. Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121, 4221–4236 (2004).

    Article  ADS  Google Scholar 

  47. Brixner, T., Stiopkin, I. V. & Fleming, G. R. Tunable two-dimensional femtosecond spectroscopy. Opt. Lett. 29, 884–886 (2004).

    Article  ADS  Google Scholar 

  48. Augulis, R. & Zigmantas, D. Two-dimensional electronic spectroscopy with double modulation lock-in detection: Enhancement of sensitivity and noise resistance. Opt. Express 19, 13126–13133 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. v. Roon for preparation of the PSII RC sample. E.R., M.F., J.T. and R.v.G. were supported by the VU University Amsterdam, the Laserlab-Europe Consortium, the TOP grant (700.58.305) from the Foundation of Chemical Sciences part of NWO and the advanced investigator grant (267333, PHOTPROT) from the European Research Council. E.R., M.F. and R.v.G. were supported by the EU FP7 project PAPETS (GA 323901). R.v.G. gratefully acknowledges his ‘Academy Professor’ grant from the Royal Netherlands Academy of Arts and Sciences (KNAW). V.I.N. was supported by the Russian Foundation for Basic Research (grant No. 12-04-01085) and by a NWO visitor grant. Work in the laboratory of D.Z. was supported by the Swedish Research Council, Knut and Alice Wallenberg Foundation and Wenner-Gren Foundations.

Author information

Authors and Affiliations

Authors

Contributions

E.R., R.A., M.F., J.T. and D.Z. collected the experimental 2DES data. R.A. and M.F. developed the data analysis programs. E.R. analysed the experimental data. V.I.N., E.R. and R.v.G. developed the theoretical modelling. E.R. D.Z. and R.v.G. designed the research. E.R., V.I.N., D.Z. and R.v.G. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Elisabet Romero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, E., Augulis, R., Novoderezhkin, V. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nature Phys 10, 676–682 (2014). https://doi.org/10.1038/nphys3017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3017

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing