Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Demonstration of magnetically activated and guided isotope separation

Abstract

Enriched isotopes are widely used in medicine, basic science and energy production, and the need will only grow in the future. The main method for enriching stable isotopes today, the calutron, dates back over eighty years and has an uncertain future, creating an urgent need, especially in nuclear medicine. We report here the experimental realization of a general and efficient method for isotope separation that presents a viable alternative to the calutron. Combining optical pumping and a unique magnet geometry, we observe substantial depletion of Li-6 throughput in a lithium atomic beam produced by an evaporation source over a range of flux. These results demonstrate the viability of our method to yield large degrees of enrichment in a manner that is amenable to industrial scale-up and the production of commercially relevant quantities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic top-down view of apparatus used for lithium separation.
Figure 2: Effect of source position on the profile of lithium throughput.
Figure 3: Isotope-selective measurements.
Figure 4: Throughput and efficiency measurements.

References

  1. Lawrence, E. & Livingston, M. The production of high speed light ions without the use of high voltages. Phys. Rev. 40, 19–35 (1932).

    Article  ADS  Google Scholar 

  2. Love, L. O. Electromagnetic separation of isotopes at Oak Ridge: An informal account of history, techniques, and accomplishments. Science 182, 343–352 (1973).

    Article  ADS  Google Scholar 

  3. Yergey, A. L. & Yergey, A. K. Preparative scale mass spectrometry: A brief history of the calutron. J. Am. Soc. Mass Spectrom. 8, 943–953 (1997).

    Article  Google Scholar 

  4. Adelstein, S. J. & Manning, F. J. Isotopes for Medicine and the Life Sciences (National Academies, 1995).

    Google Scholar 

  5. Brown, D. & Harrison, S. Isotope Production and Applications in the 21st Century Production techniques of stable metal isotopes: Current status and future trends. 123–128 (World Scientific Publishing Company, 2000).

    Chapter  Google Scholar 

  6. Rivard, M. J. et al. The US National Isotope Program: Current status and strategy for future success. Appl. Radiat. Isotopes 63, 157–178 (2005).

    Article  Google Scholar 

  7. Norenberg, J. et al. Workshop on the Nation’s Need for Isotopes: Present and Future. DOE/SC-0107 (US Department of Energy, 2008).

    Google Scholar 

  8. Isotopes for the Nation’s Future: A long range plan. Nuclear Science Advisory Committee: http://science.energy.gov/~/media/np/nsac/pdf/docs/nsaci_ii_report.pdf (2009).

  9. Jerkins, M., Chavez, I., Even, U. & Raizen, M. G. Efficient isotope separation by single-photon atomic sorting. Phys. Rev. A 82, 033414 (2010).

    Article  ADS  Google Scholar 

  10. Raizen, M. G. & Klappauf, B. Magnetically activated and guided isotope separation. New J. Phys. 14, 023059 (2012).

    Article  ADS  Google Scholar 

  11. Newman, E. Separated Isotopes: Vital Tools for Science and Medicine, The stable isotope enrichment program at Oak Ridge National Laboratory. 45–80 (National Academy, 1982).

    Google Scholar 

  12. Bell, W. & Tracy, J. Stable Isotope Separation in Calutrons: Forty Years of Production and Distribution. ORNL/TM–10356 (Oak Ridge National Laboratory, 1987).

    Book  Google Scholar 

  13. Terry, J. W. Alternative Isotope Enrichment Processes. CONF–8309127–1 (Oak Ridge National Laboratory, 1983).

    Google Scholar 

  14. Kastler, A. Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique. J. Physique Radium 11, 255–265 (1950).

    Article  Google Scholar 

  15. Xiwen, Z., Guilong, H., Ganghua, M. & Delin, Y. Laser isotope enrichment of lithium by magnetic deflection of a polarized atomic beam. J. Phys. B 25, 3307–3314 (1992).

    Article  ADS  Google Scholar 

  16. Van Wijngaarden, W. & Li, J. Laser isotope separation of barium using an inhomogeneous magnetic field. Phys. Rev. A 49, 1158–1164 (1994).

    Article  ADS  Google Scholar 

  17. Noh, H. R., Kim, J. O., Nam, D. S. & Jhe, W. Isotope separation in a magneto-optical trap. Rev. Sci. Instrum. 67, 1431–1433 (1996).

    Article  ADS  Google Scholar 

  18. Kok, K. D. Nuclear Engineering Handbook (Mechanical Engineering Series, Taylor & Francis, 2010).

    Google Scholar 

  19. LeBlanc, D. Molten salt reactors: A new beginning for an old idea. Nucl. Eng. Des. 240, 1644–1656 (2010).

    Article  Google Scholar 

  20. Bruce, G. M., Flack, S. M., Mongan, T. R. & Widner, T. E. Mercury Releases from Lithium Enrichment at the Oak Ridge Y-12 Plant: A Reconstruction of Historical Releases and Off-site Doses and Health Risks. Reports of the Oak Ridge Dose Reconstruction (Tennessee Department of Health, 1999).

  21. Managing Critical Isotopes: Stewardship of Lithium-7 is Needed to Ensure a Stable Supply. GAO-13-716 (United States Government Accountability Office, 2013).

  22. Kusch, P., Millman, S. & Rabi, I. The radiofrequency spectra of atoms hyperfine structure and Zeeman effect in the ground state of Li6, Li7, K39 and K41. Phys. Rev. 57, 765–780 (1940).

    Article  ADS  Google Scholar 

  23. Noble, G., Schultz, B., Ming, H. & van Wijngaarden, W. Isotope shifts and fine structures of 6,7LiD lines and determination of the relative nuclear charge radius. Phys. Rev. A 74, 012502 (2006).

    Article  ADS  Google Scholar 

  24. Delhuille, R. et al. Optimization of a Langmuir–Taylor detector for lithium. Rev. Sci. Instrum. 73, 2249–2258 (2002).

    Article  ADS  Google Scholar 

  25. Gillot, J., Gauguet, A., Büchner, M. & Vigué, J. Optical pumping of a lithium atomic beam for atom interferometry. Eur. Phys. J. D 67, 263 (2013).

    Article  ADS  Google Scholar 

  26. The Risks and Benefits of Laser Isotope Separation Federation of American Scientists: http://www.fas.org/policy/debates/20120716/ (2012).

Download references

Acknowledgements

The authors would like to thank K. Melin for his contributions to the experiment.

Author information

Authors and Affiliations

Authors

Contributions

T.R.M., B.K. and M.G.R. contributed equally to the experiment. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Mark G. Raizen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1021 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazur, T., Klappauf, B. & Raizen, M. Demonstration of magnetically activated and guided isotope separation. Nature Phys 10, 601–605 (2014). https://doi.org/10.1038/nphys3013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing