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thesis

Does not compute?
Most physicists now take the view 
that quantum physics is irreducibly 
non-deterministic and that nature is 
fundamentally ruled by chance. Those who 
still hope otherwise — inspired by the earlier 
efforts of figures such as Albert Einstein, 
David Bohm or Roger Penrose — now 
occupy the fringe of physics belief. They 
haven’t given up, however, and continue 
to churn out some extremely creative ideas 
about how quantum randomness might 
actually be the result of a fully deterministic 
underlying process.

One of the most provocative recent 
efforts along these lines comes from Oxford 
physicist Tim Palmer, who began his 
research career thirty years ago in general 
relativity, studying under Stephen Hawking. 
He then made an abrupt shift to climate 
modelling. Over several decades, Palmer 
made seminal contributions to climate 
science, especially by helping to establish 
methods emphasizing the unavoidable 
uncertainty in climate projections that arises 
from inherently chaotic dynamics.

Ironically, Palmer now believes that 
the theory of dynamical chaos and 
‘strange attractors’ — the geometrical 
structures signifying chaos in dissipative 
systems — might be the key concepts 
required to tackle a number of fundamental 
physics issues, among them building 
a sensible theory of quantum gravity. 
Moreover, he suggests that a return to 
determinism might follow. Incredible? Well, 
it takes a few steps to see how all that might 
come about.

You might wonder how chaos could 
possibly be relevant. After all, the 
Schrödinger equation of non-relativistic 
quantum theory is linear, and so cannot 
produce chaos or any strange attractor. 
As Palmer notes, however, the flow of 
an ensemble of trajectories for a chaotic 
system — the famous Lorenz equations, for 
example — also follows a linear equation, 
the so-called Liouville equation of classical 
mechanics. This essentially describes the 
conservation of probability within the 
system, and its linearity is fully consistent 
with strong nonlinearity in the underlying 
system dynamics.

Hence, there’s nothing at all logically 
problematic about the linear Schrödinger 
equation possibly emerging as a probability-
level description of deeper, underlying 
nonlinear dynamics. What might those 
dynamics be? Palmer doesn’t try to work 

out them out directly, but instead takes a 
geometric approach.

In dynamical systems theory, the key 
object in the description of the long-term 
dynamics of a dissipative system is its 
attractor — an invariant set that almost all 
system trajectories approach asymptotically. 
In a chaotic system, this is a strange attractor 
with fractal or multi-fractal geometry. In 
the famous Lorenz system, for example, the 
attractor looks crudely like two intersecting 
surfaces that resemble a butterfly. On closer 
inspection it turns out to be an infinitely 
intricate set of nested surfaces — a fractal set 
of non-integer dimension.

Palmer makes a conjecture — but a 
natural one — that the dynamics of the 
stuff of our Universe may be similarly 
described as approaching some invariant 
attractor. He refers to this as the ‘invariant 
set postulate’  — that the Universe is 
evolving causally and deterministically on 
(or very close to) some measure-zero, fractal 
invariant set. This is simply an assumption, 
although he points to some basic aspects of 
the dynamics of gravity (especially the loss 
of information in black holes) that could 
provide a mechanism for the progressive loss 
of phase-space volume. This would lead to 
an attractor.

It’s here that things become really 
interesting. If you suppose that the trajectory 
of the Universe is flowing over some crazy 
fractal invariant set, does this idea actually 
lead us to any of the weird stuff we know 
from the quantum world — things like 
uncertainty, the impossibility of certain 
variables taking simultaneous definite values 
or the spooky and seemingly non-local 
Bell-type correlations? Palmer suggests that 
much of this falls out almost immediately.

For example, take the Schrödinger 
equation itself. Despite its loose similarity to 
the classical Liouville equation, it also differs 
in a number of extremely important ways. It 
contains a factor i = √(−1) and also Planck’s 
constant. Moreover, whereas the focus of 
the Liouville equation is a normal function 
defined over a phase space, the Schrödinger 

equation involves a wave function defined 
in an abstract and complex-valued Hilbert 
space. Where might these differences 
come from? Palmer argues that all three 
tumble out of the invariant-set perspective 
once one makes an explicit mathematical 
representation of the dynamics on this set. 

Out of these symbolic dynamics also 
emerges another profound idea — that 
physics itself might be non-computational 
in a way few physicists have considered. 
That is, that the dynamical evolution on 
the invariant set may involve processes 
that cannot be computed even though they 
remain completely deterministic. This idea 
has been proposed before by Penrose, who 
suggested that non-computational processes 
might arise from a proper treatment of 
gravity. Palmer’s proposal is consistent 
with this idea, but places the origin in 
the fractal structure of the attractor. This 
raises the appealing idea that quantum 
mechanics might look strange not because 
it’s non-deterministic, but because it is 
not computable.

By this point, I’m sure readers are 
wondering: but what about the Bell 
inequalities? Don’t the experiments 
showing their violation prove that a 
local deterministic theory of this kind 
is impossible? Well, Palmer suggests the 
answer to that is ‘no’. The fractal geometry 
of the attractor implies that some of the 
necessary preconditions for Bell-type 
inequalities to be derived can never be fully 
met. A key assumption is measurement 
independence — the idea that experimenters 
in distant separated regions can choose 
their experimental settings completely 
independently. Palmer suggests that the 
invariant set provides a ‘non-conspiratorial’ 
mechanism by which this postulate can be 
partially violated. The fractal nature of the 
attractor implies that certain counter-factual 
states involved in deriving Bell inequalities 
simply do not exist as possibilities.

Overall, Palmer comes at these issues 
from an entirely new direction, and brings 
deep and highly counter-intuitive ideas from 
dynamical systems theory into a somewhat 
foreign setting. The world of deterministic 
dynamics, he suggests, already has enough 
weirdness in it to account for everything 
in quantum physics — but only if we really 
take deterministic chaos seriously at the 
universal scale. ❒
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