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thesis

Make the connection
Many scientists believe that scientific 
theories become ever more general and 
encompassing with time. More advanced 
theories such as quantum mechanics contain 
older theories, such as classical mechanics, 
as special cases. Thermodynamics was 
superseded when it was shown to follow 
from the more general ideas of statistical 
mechanics; the latter reduces to the former 
in the limit of a very large number of 
particles. Similarly, Newtonian physics 
drops out of Einstein’s relativity if the speed 
of light increases without bound.

Typically, we imagine this connection 
through limits in analogy to simple 
functions — one theory turns into another 
much as exp(εx) turns into 1 + εx for 
ε approaching 0. But is this right? Or 
is it only familiar? Several authors — 
notably physicist Michael Berry and 
philosopher Robert Batterman — have 
suggested that the nature of this limit 
is often quite different (M. V. Berry, 
Phys. Today 55, 10–11; May 2002, and 
R. W. Batterman, The Devil in the Details: 
Asymptotic Reasoning in Explanation, 
Reduction and Emergence; Oxford Univ. Press, 
2002). Many theories are actually connected 
more subtly through singular asymptotic 
limits — where the end point is qualitatively 
distinct from all points along the path.

How, for example, does classical physics 
emerge as the limit of quantum mechanics? 
Suppose we take the path integral 
perspective. In this view, the probability 
amplitude (or wavefunction) for a system 
to go from state A to state B is formed by 
adding up an infinite number of amplitudes 
for all of the many paths the system might 
take in going from A to B. Each contributing 
amplitude is simply exp(iS/ħ), where S is the 
classical action for the system moving along 
that path. As Richard Feynman showed in 
his beautiful initial papers on this approach, 
classical behaviour emerges in the limit of 
ħ going to zero.

But it is not a simple limit. Rather, as 
ħ gets small, contributions from different 
paths fluctuate in an increasingly violent 
way. In any simple mathematical sense, 
there is no convergence. As ħ gets infinitely 
close to zero, the wavefunction remains a 
wavefunction — it just becomes infinitely 
complicated in structure. The definite 
trajectory one expects from classical physics 
only emerges if one somewhat arbitrarily 
sets to zero all the fluctuating parts away 
from the path where S is stationary.

Making the connection takes something 
more than just a simple limit. There’s a 
transformation of concepts involved too. 
Berry has examined many other examples 
that work similarly, including the small-
wavelength transformation of wave optics 
into geometric optics, or the emergence 
of fluid turbulence in the limit of a high 
Reynold’s number.

Leo Kadanoff has also recently discussed 
this idea in a historical perspective on 
the life and work of J. Willard Gibbs 
(http://arxiv.org/abs/1403.2460). Gibbs 
introduced the concepts of phase space, 
phase transitions and thermodynamic 
surfaces, and raised a host of tricky issues 
concerning the connections between 
theory at different levels. Again, these 
connections almost always involve singular 
or asymptotic limits. For example, the 
sharp distinction between thermodynamic 
phases — liquid water and solid ice — does 
not exist in any statistical mechanics for a 
finite number of particles, as Gibbs seems to 
have noticed.

It makes sense, then, that Gibbs was 
also the first to bring wide attention to a 
mathematical puzzle — now known as 
the Gibbs paradox — which illustrates 
singular limits in a simple way. Imagine a 
periodic saw-tooth-shaped function f(x) 
with a period of 2π. It rises linearly from 
zero, then at 2π drops sharply back to 
zero, and repeats this pattern. It is trivial 
to approximate this as a Fourier series, 
summing N sinusoidal terms of period 2π/n 
for n running from 1 to N. For large values 
of N, this series converges to the function, 
or so Gibbs first reported in 1898 in the 
pages of Nature. 

However, he soon had to report an 
error — actually, the Fourier series only 
converges for most values of x. Trouble 
emerges near the points where the saw-
tooth curve abruptly jumps down. Near 
those points, the highest frequency terms 
in the series work hard to capture the 
sharp vertical moves of the saw-tooth, but 
never quite succeed. The approximation 

always wiggles more than the real function 
and, as Gibbs discovered, the height of 
the wiggles approaches a fixed value as 
N gets very large. It does go away, but 
differently — becoming compressed into 
an ever narrower zone around the saw-
tooth boundaries.

As Kadanoff points out, the resolution 
of the paradox that Gibbs found requires 
a change of variables suited to giving ever 
increasing scrutiny to these special zones. 
Returning to physics and links between 
theories, we might think of the saw-tooth 
and its Fourier approximation as different 
theories. Making the connection demands 
different approaches in different settings. 
Perhaps, as Kadanoff suggests, there are 
no ‘all encompassing’ theories for physical 
systems. Any full description of the physical 
world would “require different and non-
overlapping conceptualizations.”

These ideas bring to mind the 
philosopher of science Thomas Kuhn, who 
famously wrote about subsequent theories 
in history as being “incommensurate”. 
Einstein’s relativity does not just describe 
the same world in different terms; it 
describes a different world. Mass can be 
completely transformed into energy and 
vice versa, an idea that is entirely foreign to 
Newtonian physics.

This idea of singular limit connections 
between theories might help clarify what 
Kuhn was talking about. Batterman 
has argued that many theories that we 
take to be fundamental — theories that 
supersede earlier, less fundamental views — 
really aren’t. They don’t offer complete 
explanations on their own, but require 
implicit reference to relic elements of 
earlier theories. The reason, he suggests, has 
everything to do with singular limits.

It’s another example of mathematics 
offering the right conceptual language to 
make sense of things outside mathematics. 
I’ve speculated before that fields such as 
history might benefit by updating their 
mathematical metaphors — moving from 
old familiar ideas of cycles, as suggested by 
celestial mechanics, to modern conceptions 
of chaos and naturally erratic dynamics, as 
commonly seen in systems driven out of 
equilibrium. Mathematics, as the study of 
abstract examples of connections between 
different logical structures, is an invaluable 
resource for philosophy itself. ❐
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Gibbs raised a host of 
tricky issues concerning 
the connections 
between theory at 
different levels.
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