Spin and pseudospins in layered transition metal dichalcogenides

Subjects

Abstract

The recent emergence of two-dimensional layered materials — in particular the transition metal dichalcogenides — provides a new laboratory for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. These degrees of freedom are the real electron spin, the layer pseudospin, and the valley pseudospin. New methods for the quantum control of the spin and these pseudospins arise from the existence of Berry phase-related physical properties and strong spin–orbit coupling. The former leads to the versatile control of the valley pseudospin, whereas the latter gives rise to an interplay between the spin and the pseudospins. Here, we provide a brief review of both theoretical and experimental advances in this field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: 2D hexagonal lattice and valley physics.
Figure 2: Electrostatic charging effects of 2D excitons.
Figure 3: Demonstration of valley polarization and valley coherence.
Figure 4: Spin, valley, and layer pseudospin coupling.
Figure 5: Spectroscopic evidence of coupling between spin and layer pseudospin.

References

  1. 1

    Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

  2. 2

    J Ohkawa, F. & Uemura, Y. Theory of valley splitting in an N-channel (100) inversion layer of Si III. Enhancement of splittings by many-body effects. J. Phys. Soc. Jpn 43, 925–932 (1977).

  3. 3

    Sham, L., Allen, S., Kamgar, A. & Tsui, D. Valley–valley splitting in inversion layers on a high-index surface of silicon. Phys. Rev. Lett. 40, 472–475 (1978).

  4. 4

    Bloss, W., Sham, L. & Vinter, V. Interaction-induced transition at low densities in silicon inversion layer. Phys. Rev. Lett. 43, 1529–1532 (1979).

  5. 5

    Sham, L. & Nakayama, M. Effective-mass approximation in the presence of an interface. Phys. Rev. B 20, 734–747 (1979).

  6. 6

    Gunawan, O., Habib, B., De Poortere, E. & Shayegan, M. Quantized conductance in an AlAs two-dimensional electron system quantum point contact. Phys. Rev. B 74, 155436 (2006).

  7. 7

    Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

  8. 8

    Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

  9. 9

    Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

  10. 10

    Bishop, N. et al. Valley polarization and susceptibility of composite fermions around a filling factor ν = 32. Phys. Rev. Lett. 98, 266404 (2007).

  11. 11

    Shkolnikov, Y., De Poortere, E., Tutuc, E. & Shayegan, M. Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys. Rev. Lett. 89, 226805 (2002).

  12. 12

    Takashina, K., Ono, Y., Fujiwara, A., Takahashi, Y. & Hirayama, Y. Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 96, 236801 (2006).

  13. 13

    Karch, J. et al. Photoexcitation of valley-orbit currents in (111)-oriented silicon metal-oxide-semiconductor field-effect transistors. Phys. Rev. B 83, 121312 (2011).

  14. 14

    Isberg, J. et al. Generation, transport and detection of valley-polarized electrons in diamond. Nature Mater. 12, 760–764 (2013).

  15. 15

    Zhu, Z., Collaudin, A., Fauqué, B., Kang, W. & Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nature Phys. 8, 89–94 (2011).

  16. 16

    Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

  17. 17

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  18. 18

    Gunlycke, D. & White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 106, 136806 (2011).

  19. 19

    Jiang, Y., Low, T., Chang, K., Katsnelson, M. & Guinea, F. Generation of pure bulk valley current in graphene. Phys. Rev. Lett. 110, 046601 (2013).

  20. 20

    Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  21. 21

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnol. 7, 494–498 (2012).

  22. 22

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnol. 7, 490–493 (2012).

  23. 23

    Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

  24. 24

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotechnol. 8, 634–638 (2013).

  25. 25

    Xiao, D., Chang, M-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

  26. 26

    Mattheiss, L. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).

  27. 27

    Ezawa, M. Spin-valley optical selection rule and strong circular dichroism in silicene. Phys. Rev. B 86, 161407 (2012).

  28. 28

    Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

  29. 29

    Jung, J., Zhang, F., Qiao, Z. & MacDonald, A. H. Valley-Hall kink and edge states in multilayer graphene. Phys. Rev. B 84, 075418 (2011).

  30. 30

    Ezawa, M. Topological Kirchhoff law and bulk-edge correspondence for valley Chern and spin-valley Chern numbers. Phys. Rev. B 88, 161406 (2013).

  31. 31

    Wu, G. Y., Lue, N-Y. & Chang, L. Graphene quantum dots for valley-based quantum computing: A feasibility study. Phys. Rev. B 84, 195463 (2011).

  32. 32

    Wu, G. Y. & Lue, N-Y. Graphene-based qubits in quantum communications. Phys. Rev. B 86, 045456 (2012).

  33. 33

    Lee, M-K., Lue, N-Y., Wen, C-K. & Wu, G. Y. Valley-based field-effect transistors in graphene. Phys. Rev. B 86, 165411 (2012).

  34. 34

    Wu, S. et al. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7, 2768–2772 (2013).

  35. 35

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

  36. 36

    Mak, K., Lui, C., Shan, J. & Heinz, T. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009).

  37. 37

    Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).

  38. 38

    Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009).

  39. 39

    Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

  40. 40

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

  41. 41

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  42. 42

    Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).

  43. 43

    Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 . Nature Nanotechnol. 9, 111–115 (2014).

  44. 44

    Peelaers, H. & Van de Walle, C. G. Effects of strain on band structure and effective masses in MoS2 . Phys. Rev. B 86, 241401 (2012).

  45. 45

    Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012).

  46. 46

    Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013).

  47. 47

    Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013).

  48. 48

    Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nature Nanotechnol. 8, 271–276 (2013).

  49. 49

    Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013).

  50. 50

    Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013).

  51. 51

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2 . Nano Lett. 13, 5361–5366 (2013).

  52. 52

    Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626–3630 (2013).

  53. 53

    Zhu, C. R. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 . Phys. Rev. B 88, 121301 (2013).

  54. 54

    He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 2931–2936 (2013).

  55. 55

    Thilagam, A. Two-dimensional charged-exciton complexes. Phys. Rev. B 55, 7804–7808 (1997).

  56. 56

    Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

  57. 57

    Feng, J., Qian, X., Huang, C-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photonics 6, 866–872 (2012).

  58. 58

    Shi, H., Pan, H., Zhang, Y-W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2 . Phys. Rev. B 87, 155304 (2013).

  59. 59

    Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).

  60. 60

    Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

  61. 61

    Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

  62. 62

    Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2 . Phys. Rev. Lett. 112, 047401 (2014).

  63. 63

    Shi, H. et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013).

  64. 64

    Sim, S. et al. Exciton dynamics in atomically thin MoS2: Inter-excitonic interaction and broadening kinetics. Preprint at http://arxiv.org/abs/1308.2023 (2013).

  65. 65

    Kumar, N. et al. Exciton-exciton annihilation in MoSe2 monolayers. Preprint at http://arxiv.org/abs/1311.1079 (2013).

  66. 66

    Mai, C. et al. Many body effects in valleytronics: Direct measurement of valley lifetimes in single layer MoS2 . Nano Lett. 14, 202–206 (2013).

  67. 67

    Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

  68. 68

    Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 . Nature Phys. 9, 149–153 (2013).

  69. 69

    Coehoorn, R., Haas, C. & de Groot, R. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35, 6203–6206 (1987).

  70. 70

    Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).

  71. 71

    Zeng, H. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

  72. 72

    Kośmider, K. & Fernández-Rossier, J. Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. B 87, 075451 (2013).

  73. 73

    Song, Y. & Dery, H. Transport Theory of Monolayer Transition-Metal Dichalcogenides through symmetry. Phys. Rev. Lett. 111, 026601 (2013).

  74. 74

    Kormányos, A. et al. Phys. Rev. B 88, 045416 (2013).

  75. 75

    Feng, W. et al. Intrinsic spin Hall effect in monolayers of group-VI dichalcogenides: A first-principles study. Phys. Rev. B 86, 165108 (2012).

  76. 76

    Liu, G-B., Shan, W-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

  77. 77

    Lu, H-Z., Yao, W., Xiao, D. & Shen, S-Q. Intervalley scattering and localization behaviors of spin–valley coupled Dirac fermions. Phys. Rev. Lett. 110, 016806 (2013).

  78. 78

    Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nature Commun. 4, 15 (2013).

  79. 79

    Jones, A. M. et al. Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nature Phys. 10, 130–134 (2014).

  80. 80

    Yuan, H. et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys. 9, 563–569 (2013).

  81. 81

    Zhao, W. et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2 . Nano Lett. 13, 5627–5634 (2013).

  82. 82

    Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).

  83. 83

    Kikkawa, J. M. Room-temperature spin memory in two-dimensional electron gases. Science 277, 1284–1287 (1997).

  84. 84

    Gupta, J. A., Knobel, R., Samarth, N. & Awschalom, D. D. Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001).

  85. 85

    Mak, Kin, Fai, McGill, K. L., Park, J. & McEuen, P. L. Observation of the valley Hall effect. Preprint at http://arxiv.org/abs/1403.5039 (2014).

  86. 86

    Li, X., Zhang, F. & Niu, Q. Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: Application to an isolated MoS2 trilayer. Phys. Rev. Lett. 110, 066803 (2013).

  87. 87

    Popov, I., Seifert, G. & Tománek, D. Designing electrical contacts to MoS2 monolayers: A computational Study. Phys. Rev. Lett. 108, 156802 (2012).

  88. 88

    Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nature Mater. 12, 815–820 (2013).

  89. 89

    Das, S., Chen, H-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

  90. 90

    Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

  91. 91

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2 . Nano Lett. 13, 4212–4216 (2013).

  92. 92

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  93. 93

    Klinovaja, J. & Loss, D. Spintronics in MoS2 monolayer quantum wires. Phys. Rev. B 88, 075404 (2013).

Download references

Acknowledgements

This work was supported by DoE BES DE-SC0008145 and NSF DMR-1150719 (XX), Croucher Foundation under the Croucher Innovation Award, and the RGC (HKU705513P, HKU8/CRF/11G) and UGC (AoE/P-04/08) of Hong Kong (WY), DoE BES Materials Sciences and Engineering Division (DX), and NSF DMR-1106172 (TH).

Author information

X.X. and W.Y. wrote the paper that was examined and improved by all authors.

Correspondence to Xiaodong Xu or Wang Yao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Yao, W., Xiao, D. et al. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys 10, 343–350 (2014). https://doi.org/10.1038/nphys2942

Download citation

Further reading