Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon

Abstract

In bulk materials, superconductivity is remarkably robust with respect to non-magnetic disorder. In the two-dimensional limit, however, disorder and electron correlations both tend to destroy the quantum condensate. Here we study, both experimentally and theoretically, the effect of structural disorder on the local spectral response of crystalline superconducting monolayers of lead on silicon. In a direct scanning tunnelling microscopy measurement, we reveal how the local superconducting spectra lose their conventional character and show variations at scales significantly shorter than the coherence length. We demonstrate that the precise atomic organization determines the robustness of the superconducting order with respect to structural defects, such as single atomic steps, which may disrupt superconductivity and act as native Josephson barriers. We expect that our results will improve the understanding of microscopic processes in surface and interface superconductivity, and will open a new way of engineering atomic-scale superconducting quantum devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of disorder on the superconducting properties of one-atomic-layer films of Pb on Si(111) at T = 320 mK.
Figure 2: Cartoon of the BCS theory and leading corrections.
Figure 3: Superconducting properties of one-atomic-layer films of Pb on Si(111) near step edges at T = 320 mK.
Figure 4: Magnetic field response of the striped incommensurate Pb/Si(111) phase.
Figure 5: Revealing vortices in Pb/Si(111).
Figure 6: Magnetic field response of Pb/Si(111) revealing Josephson junctions.

Similar content being viewed by others

References

  1. Zhang, T. et al. Superconductivity in one-atomic-layer metal films grown on Si(111). Nature Phys. 6, 104–108 (2010).

    Article  ADS  Google Scholar 

  2. Yamada, Y., Hirahara, T. & Hasegawa, S. Magnetoresistance measurements of a superconducting surface state of In-induced and Pb-induced structures on Si(111). Phys. Rev. Lett. 110, 237001 (2013).

    Article  ADS  Google Scholar 

  3. Anderson, P. W. Theory of dirty superconductors. J. Phys. Chem. Solids 11, 26–30 (1959).

    Article  ADS  Google Scholar 

  4. Goldman, A. M. & Markovic, N. Superconductor–insulator transitions in the two-dimensional limit. Phys. Today 51, 39–44 (November, 1998).

    Article  Google Scholar 

  5. Huscroft, C. & Scalettar, R. T. Evolution of the density of states gap in a disordered superconductor. Phys. Rev. Lett. 81, 2775–2778 (1998).

    Article  ADS  Google Scholar 

  6. Bouadim, K., Loh, Y. L., Randeria, M. & Trivedi, N. Single- and two-particle energy gaps across the disorder-driven superconductor–insulator transition. Nature Phys. 7, 884–889 (2011).

    Article  ADS  Google Scholar 

  7. Feigel’man, M. V. & Skvortsov, M. A. Universal broadening of the Bardeen–Cooper–Schrieffer coherence peak of disordered superconducting films. Phys. Rev. Lett. 109, 147002 (2012).

    Article  ADS  Google Scholar 

  8. Feigel’man, M. V., Ioffe, L. B., Kravtsov, V. E. & Cuevas, E. Fractal superconductivity near localization threshold. Ann. Phys. 325, 1390–1478 (2010).

    Article  ADS  Google Scholar 

  9. Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductors. Nature Phys. 7, 239–244 (2011).

    Article  ADS  Google Scholar 

  10. Uchihashi, T., Puneet, M., Aono, M. & Nakayama, T. Macroscopic superconducting current through a silicon surface reconstruction with indium adatoms: Si(111)-( )-In. Phys. Rev. Lett. 107, 207001 (2011).

    Article  ADS  Google Scholar 

  11. Song, C. L. et al. Suppression of superconductivity by twin boundaries in FeSe. Phys. Rev. Lett. 109, 137004 (2012).

    Article  ADS  Google Scholar 

  12. Seehofer, L., Falkenberg, G., Daboul, D. & Johnson, R. L. Structural study of the close-packed two-dimensional phases of Pb on Ge(111) and Si(111). Phys. Rev. B 51, 13503–13515 (1995).

    Article  ADS  Google Scholar 

  13. Hupalo, M., Schmalian, J. & Tringides, M. C. Devil staircase in Pb/Si(111) ordered phases. Phys. Rev. Lett. 90, 216106 (2003).

    Article  ADS  Google Scholar 

  14. Horikoshi, K., Tong, X., Nagao, T. & Hasegawa, S. Structural phase transitions of Pb-adsorbed Si(111) surfaces at low temperatures. Phys. Rev. B 60, 13287–13290 (1999).

    Article  ADS  Google Scholar 

  15. Kumpf, C. et al. Structural study of the commensurate incommensurate low-temperature phase transition of Pb on Si(111). Surf. Sci. 448, L213–L219 (2000).

    Article  Google Scholar 

  16. Brochard, S. et al. Ab initio calculations and scanning tunnelling microscopy experiments of the Si(111) -Pb surface. Phys. Rev. B 66, 205403 (2002).

    Article  ADS  Google Scholar 

  17. Cudazzo, P., Profeta, G. & Continenza, A. Low temperature phases of Pb/Si(111) and related surfaces. Surf. Sci. 602, 747–754 (2008).

    Article  ADS  Google Scholar 

  18. Jung, S. C. & Kang, M. H. Triple-domain effects on the electronic structure of Pb/Si(111)-( ): Density-functional calculations. Surf. Sci. 605, 551–554 (2011).

    Article  ADS  Google Scholar 

  19. Choi, W. H., Koh, H., Rotenberg, E. & Yeom, H. W. Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission. Phys. Rev. B 75, 075329 (2007).

    Article  ADS  Google Scholar 

  20. Kim, K. S., Jung, S. C., Kang, M. H. & Yeom, H. W. Nearly massless electrons in the silicon interface with a metal film. Phys. Rev. Lett. 104, 246803 (2010).

    Article  ADS  Google Scholar 

  21. Guo, Y. et al. Superconductivity modulated by quantum size effects. Science 306, 1915–1917 (2004).

    Article  ADS  Google Scholar 

  22. Özer, M. M., Thompson, J. R. & Weitering, H. H. Hard superconductivity of a soft metal in the quantum regime. Nature Phys. 2, 173–176 (2006).

    Article  ADS  Google Scholar 

  23. Eom, D., Qin, S., Chou, M-Y. & Shih, C. K. Persistent superconductivity in ultrathin Pb films: A scanning tunnelling spectroscopy study. Phys. Rev. Lett. 96, 027005 (2006).

    Article  ADS  Google Scholar 

  24. Özer, M. M., Jia, Y., Zhang, Z., Thompson, J. R. & Weitering, H. H. Tuning the quantum stability and superconductivity of ultrathin metal alloys. Science 316, 1594–1597 (2007).

    Article  ADS  Google Scholar 

  25. Brun, C. et al. Reduction of the superconducting gap of ultrathin Pb islands grown on Si(111). Phys. Rev. Lett. 102, 207002 (2009).

    Article  ADS  Google Scholar 

  26. Qin, S. Y., Kim, J., Niu, Q. & Shih, C. K. Superconductivity at the two-dimensional limit. Science 324, 1314–1317 (2009).

    Article  ADS  Google Scholar 

  27. De Gennes,P.G. (ed.) Superconductivity of Metals and Alloys (W A Benjamin, 1966).

    MATH  Google Scholar 

  28. Gor´kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: Mixed singlet–triplet state. Phys. Rev. Lett. 87, 037004 (2001).

    Article  ADS  Google Scholar 

  29. Altshuler, B. L., Aronov, A.G. & Khmelnitskii, D.E. Effects of electron–electron collisions with small energy transfers on quantum localization. J.Phys. C 15, 7367–7386 (1982).

    ADS  Google Scholar 

  30. Altshuler, B. L. & Aronov, A.G. Electron–Electron Interactions in Disordered Systems (North Holland, 1985).

    Google Scholar 

  31. Ketterle, W. & Zwierlein, M.V. Proceedings of the International School of Physics ‘Enrico Fermi’. 95–287 (IOS Press, 2008).

    Google Scholar 

  32. Thouless, D. J. Electrons in disordered systems and the theory of localization. Phys. Rep. 13, 93–142 (1974).

    Article  ADS  Google Scholar 

  33. Dil, J. H. et al. Rashba-type spin–orbit splitting of quantum well states in ultrathin Pb films. Phys. Rev. Lett. 101, 266802 (2008).

    Article  ADS  Google Scholar 

  34. Gierz, I. et al. Silicon surface with giant spin splitting. Phys. Rev. Lett. 103, 046803 (2009).

    Article  ADS  Google Scholar 

  35. Yaji, K. et al. Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface. Nature Commun. 1, 17 (2010).

    Article  ADS  Google Scholar 

  36. Slomski, B., Landolt, G., Bihlmayer, G., Osterwalder, J. & Dil, J. H. Tuning of the Rashba effect in Pb quantum well states via a variable Schottky barrier. Sci. Rep. 3, 1963 (2013).

    Article  ADS  Google Scholar 

  37. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  ADS  Google Scholar 

  38. Ginzburg, V. L. & Kirzhnits, D. A. On the superconductivity of electrons at the surface levels. Sov. Phys.– JETP, 19, 269–270 (1964).

    Google Scholar 

  39. McMillan, W. L. Tunneling model of the superconducting proximity effect. Phys. Rev. 175, 537–542 (1968).

    Article  ADS  Google Scholar 

  40. Serrier–Garcia, L. et al. Scanning tunnelling spectroscopy study of the proximity effect in a disordered two-dimensional metal. Phys. Rev. Lett. 110, 157003 (2013).

    Article  ADS  Google Scholar 

  41. Kim, J. et al. Visualization of geometric influences on proximity effects in heterogeneous superconductor thin films. Nature Phys. 8, 464–469 (2012).

    Article  ADS  Google Scholar 

  42. Cherkez, V. et al. Proximity effect between two superconductors spatially resolved by scanning tunnelling spectroscopy. Phys. Rev. X 4, 011033 (2014).

    Google Scholar 

  43. Abrikosov, A. A. On the magnetic properties of superconductors of the second group. Zh. Eksp. i Teor. Fiz. 32, 1442–1452 (1957).

    Google Scholar 

  44. Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214–217 (1989).

    Article  ADS  Google Scholar 

  45. Gurevich, A. Nonlinear viscous motion of vortices in Josephson contacts. Phys. Rev. B 48, 12857–12865 (1993).

    Article  ADS  Google Scholar 

  46. Wang, Q-Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 29, 037402 (2012).

    Article  ADS  Google Scholar 

  47. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  ADS  Google Scholar 

  48. Cren, T., Serrier-Garcia, L., Debontridder, F. & Roditchev, D. Vortex fusion and giant vortex states in confined superconducting condensates. Phys. Rev. Lett. 107, 097202 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Critical reading of our manuscript by G. Deutscher and N. Trivedi is gratefully acknowledged. This work was supported by University Pierre et Marie Curie UPMC ‘Emergence’ project, French ANR Project ‘ElectroVortex’, ANR-QuDec and Templeton Foundation (40381), ARO (W911NF-13-1-0431) and CNRS PICS funds. Partial funding by US-DOE grant DE-AC02-07CH11358 is also acknowledged. The participation of G. Ménard and R. Federicci in some of the measurements is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

C.B., T.C. and D.R. designed the experiments. C.B., V.C. and D.R. carried out the experiments. T.C. analyzed the data. L.B.I. and B.L.A. performed the theoretical modelling. C.B., T.C., F.D., S.P., L.B.I., B.L.A. and D.R. wrote the paper. All authors discussed the results and took part in the correction of the manuscript.

Corresponding author

Correspondence to T. Cren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brun, C., Cren, T., Cherkez, V. et al. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon. Nature Phys 10, 444–450 (2014). https://doi.org/10.1038/nphys2937

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing