Abstract
Quantum mechanics continues to predict effects at odds with a classical understanding of nature. Experiments with light at the single-photon level have historically been at the forefront of fundamental tests of quantum theory and the current developments in photonic technologies enable the exploration of new directions. Here we review recent photonic experiments to test two important themes in quantum mechanics: wave–particle duality, which is central to complementarity and delayed-choice experiments; and Bell nonlocality, where the latest theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different experiments.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
On the creation of a photon by an electromagnetic wave ball
Scientific Reports Open Access 03 October 2023
-
Quantum double-double-slit experiment with momentum entangled photons
Scientific Reports Open Access 10 July 2020
-
Entropic nonclassicality and quantum non-Gaussianity tests via beam splitting
Scientific Reports Open Access 28 November 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. & Ezawa, H. Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989).
Bach, R., Pope, D., Liou, S.-H. & Batelaan, H. Controlled double-slit electron diffraction. New J. Phys. 15, 033018 (2013).
Jönsson, C. Electron diffraction at multiple slits. Am. J. Phys. 42, 4–11 (1974).
Carnal, O. & Mlynek, J. Young's double-slit experiment with atoms: A simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991).
Arndt, M. et al. Wave–particle duality of C60 molecules. Nature 401, 680–682 (1999).
Taylor, G. I. Interference fringes with feeble light. Proc. Camb. Phil. Soc. 15, 114–115 (1909).
Clauser, J. F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D 9, 853–860 (1974).
Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhys. Lett. 1, 173 (1986).
Jammer, M. The Philosophy of Quantum Mechanics (Wiley, 1974).
Guerreiro, T., Sanguinetti, B., Zbinden, H., Gisin, N. & Suarez, A. Single-photon space-like antibunching. Preprint at http://arxiv.org/quant-ph/1204.1712 (2012).
Hall, M. J. W. Prior information: How to circumvent the standard joint-measurement uncertainty relation. Phys. Rev. A 69, 052113 (2004).
Ozawa, M. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 67, 042105 (2003).
Erhart, J. et al. Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin measurements. Nature Phys. 8, 185–189 (2012).
Weston, M. M., Hall, M. J. W., Palsson, M. S., Wiseman, H. M. & Pryde, G. J. Experimental test of universal complementarity relations. Phys. Rev. Lett. 110, 220402 (2013).
Wiseman, H. M. Grounding Bohmian mechanics in weak values and Bayesianism. New J. Phys. 9, 165 (2007).
Kocsis, S. et al. Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011).
Aharonov, Y., Albert, D. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).
Wheeler, J. A. in Mathematical Foundations of Quantum Theory (ed. Marlow, A. R.) 9–48 (Academic Press, 1978).
Wheeler, J. A. & Zurek, W. H. Quantum Theory and Measurement (Princeton Univ. Press, 1984).
Alley, C. O., Jacubowicz, O. G. & Wickes, W. C. in Proc. Second Int. Symp.Foundations of Quantum Mechanics (Narani, H. ed.) 36 (Physics Society of Japan, 1987).
Hellmuth, T., Walther, H., Zajonc, A. & Schleich, W. Delayed-choice experiments in quantum interference. Phys. Rev. A 35, 2532–2541 (1987).
Lawson-Daku, B. J. et al. Delayed choices in atom Stern–Gerlach interferometry. Phys. Rev. A 54, 5042–5047 (1996).
Kim, Y-H., Yu, R., Kulik, S. P., Shih, Y. & Scully, M. O. Delayed “choice” quantum eraser. Phys. Rev. Lett. 84, 1–5 (2000).
Jacques, V. et al. Experimental realization of Wheeler's delayed-choice gedanken experiment. Science 315, 966–968 (2007).
Jacques, V. et al. Illustration of quantum complementarity using single photons interfering on a grating. New J. Phys. 10, 123009 (2008).
Afshar, S. S. Violation of the principle of complementarity, and its implications. Proc. SPIE 5866, 229–244 (2005).
Afshar, S. S., Flores, E., McDonald, K. F. & Knoesel, E. Paradox in wave–particle duality. Found. Phys. 37, 295–305 (2007).
Ionicioiu, R. & Terno, D. R. Proposal for a quantum delayed-choice experiment. Phys. Rev. Lett. 107, 230406 (2011).
Kaiser, F., Coudreau, T., Milman, P., Ostrowsky, D. B. & Tanzilli, S. Entanglement-enabled delayed-choice experiment. Science 338, 637–640 (2012).
Peruzzo, A., Shadbolt, P., Brunner, N., Popescu, S. & O'Brien, J. L. A quantum delayed-choice experiment. Science 338, 634–637 (2012).
Roy, S. S., Shukla, A. & Mahesh, T. S. NMR implementation of a quantum delayed-choice experiment. Phys. Rev. A 85, 022109 (2012).
Politi, A., Matthews, J. C. F., Thompson, M. G. & O'Brien, J. L. Integrated Quantum Photonics. IEEE J. Select. Top. Quant, Electron, 15, 1673–1684 (2009).
Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photon. 6, 45–49 (2012).
Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).
Scully, M. O. & Drühl, K. Quantum eraser: A proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 25, 2208–2213 (1982).
Ma, X-S. et al. Quantum erasure with causally disconnected choice. Proc. Natl Acad. Sci. USA 110, 1221–1226 (2013).
Kochen, S. & Specker, E. P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967).
Cabello, A. & García-Alcaine, G. Proposed experimental tests of the Bell–Kochen–Specker theorem. Phys. Rev. Lett. 80, 1797–1799 (1998).
Meyer, D. A. Finite precision measurement nullifies the Kochen–Specker theorem. Phys. Rev. Lett. 83, 3751–3754 (1999).
Greenberger, D., Horne, M., Shimony, A. & Zeilinger, A. Bell's theorem without inequalities. Am. J. Phys 58, 1131–1143 (1990).
Simon, C., Zukowski, M., Weinfurter, H. & Zeilinger, A. Feasible “Kochen–Specker” experiment with single particles. Phys. Rev. Lett. 85, 1783–1786 (2000).
Cabello, A. “All versus nothing” inseparability for two observers. Phys. Rev. Lett. 87, 010403 (2001).
Amselem, E., Rådmark, M., Bourennane, M. & Cabello, A. State-independent quantum contextuality with single photons. Phys. Rev. Lett. 103, 160405 (2009).
Michler, M., Weinfurter, H. & Zukowski, M. Experiments towards falsification of noncontextual hidden variable theories. Phys. Rev. Lett. 84, 5457–5461 (2000).
Huang, Y-F., Li, C-F., Zhang, Y-S., Pan, J-W. & Guo, G-C. Experimental test of the Kochen–Specker theorem with single photons. Phys. Rev. Lett. 90, 250401 (2003).
Lapkiewicz, R. et al. Experimental non-classicality of an indivisible quantum system. Nature 474, 490–493 (2011).
Klyachko, A. A., Can, M. A., Binicioğlu, S. & Shumovsky, A. S. Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 101, 020403 (2008).
Abrams, D. S. & Lloyd, S. Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems. Phys. Rev. Lett. 81, 3992–3995 (1998).
Sinha, U., Couteau, C., Jennewein, T., Laflamme, R. & Weihs, G. Ruling out multi-order interference in quantum mechanics. Science 329, 418–421 (2010).
Bell, J. S. On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964).
Pan, J-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. (in the press); preprint at http://arxiv.org/quant-ph/1303.2849 (2013).
Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).
Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91–94 (1982).
Tasca, D. S., Walborn, S. P., Toscano, F. & Souto Ribeiro, P. H. Observation of tunable Popescu–Rohrlich correlations through postselection of a Gaussian state. Phys. Rev. A 80, 030101(R) (2009).
Gerhardt, I. et al. Experimentally faking the violation of Bell's inequalities. Phys. Rev. Lett. 107, 170404 (2011).
Pomarico, E., Sanguinetti, B., Sekatski, P., Zbinden, H. & Gisin, N. Experimental amplification of an entangled photon: what if the detection loophole is ignored? New J. Phys. 13, 063031 (2011).
Eberhard, P. H. Background level and counter efficiencies required for a loophole-free Einstein–Podolsky–Rosen experiment. Phys. Rev. A 47, 747–750 (1993).
Giustina, M. et al. Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013).
Christensen, B. G. et al. Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 130406 (2013).
Lita, A. E., Miller, A. & Nam, S. W. Counting nearinfrared single-photons with 95% efficiency. Opt. Express 16, 3032 (2008).
Kim, R., Fiorentino, M. & Wong, F. Phase-stable source of polarization entangled photons using a Sagnac interferometer. Phys. Rev. A 73, 12316 (2006).
Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength tunable fibre-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007).
Larsson, J-A. & Gill, R. D. Bell's inequality and the coincidence-time loophole. Europhys. Lett. 67, 707–713 (2004).
Kofler, J., Ramelow, S., Giustina, M. & Zeilinger, A. On 'Bell violation using entangled photons without the fairsampling assumption'. Preprint at http://arxiv.org/abs/1307.6475 (2013).
Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell's inequalities using time-varying analyzers. Phys.Rev. Lett. 49, 1804–1807 (1982).
Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell's inequalities under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5034 (1998).
Scheidl, T. et al. Violation of local realism with freedom of choice. Proc. Natl Acad. Sci. USA 107, 19708–19713 (2010).
Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007).
Jones, S. J., Wiseman, H. M. & Doherty, A. C. Entanglement, Einstein–Podolsky–Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007).
Cavalcanti, E. G., Jones, S. J., Wiseman, H. M. & Reid, M. D. Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009).
Plenio, M. B. & Virmani, S. An introduction to entanglement measures. Quant. Inf. Comput. 7, 1–51 (2007).
Saunders, D. J., Jones, S. J., Wiseman, H. M. & Pryde, G. J. Experimental EPR-steering using Bell-local states. Nature Phys. 6, 845–849 (2010).
Bennet, A. J. et al. Arbitrarily loss-tolerant Einstein–Podolsky–Rosen steering allowing a demonstration over 1 km of optical fibre with no detection loophole. Phys. Rev. X 2, 031003 (2012).
Smith, D. H. et al. Conclusive quantum steering with superconducting transition-edge sensors. Nature Commun. 3, 625 (2012).
Wittmann, B. et al. Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering. New J. Phys. 14, 053030 (2012).
Cabello, A. Bell's theorem without inequalities and without alignments. Phys. Rev. Lett. 91, 230403 (2003).
D'Ambrosio, V. et al. Complete experimental toolbox for alignment-free quantum communication. Nature Commun. 3, 961 (2012).
Palsson, M. S., Wallman, J. J., Bennet, A. J. & Pryde, G. J. Experimentally demonstrating reference-frame-independent violations of Bell inequalities. Phys. Rev. A 86, 032322 (2012).
Shadbolt, P. J. et al. Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices. Sci. Rep. 2, 470 (2012).
Wallman, J. J. & Bartlett, S. D. Observers can always generate nonlocal correlations without aligning measurements by covering all their bases. Phys. Rev. A 85, 024101 (2012).
Greenberger, D. M., Horne, M. A. & Zeilinger, A. Bell's Theorem, Quantum Theory, and Conceptions of the Universe (ed. Kafatos, M.) 69–72 (Kluwer, 1989)
Mermin, N. D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990).
Bouwmeester, D., Pan, J. W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).
Pan, J-W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental tests of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger experiment. Nature 403, 515–519 (2000).
Pan, J-W., Daniell, M., Gasparoni, S., Weihs, G. & Zeilinger, A. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001).
Eibl, M. et al. Experimental observation of four-photon entanglement from parametric down-conversion. Phys.Rev. Lett. 90, 200403 (2003).
Zhao, Z. et al. Experimental violation of local realism by four-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. 912, 180401 (2003).
Erven, C. et al. Experimental three-particle quantum nonlocality under strict locality conditions. Nature Photon. 8, http://dx.doi.org/nphoton.2014.50 (2014).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
Shor, P. W. in Proc. 35th Ann. Symp. Found. Comput. Sci. 124–134 (IEEE, 1994).
Aaronson, S. & Arkhipov, A. in STOC '11: Proc. 43rd Ann. ACM Symp.Theory Comput. 333–342 (ACM, 2011).
Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).
Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).
Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).
Crespi, A. et al. Experimental boson sampling in arbitrary integrated photonic circuits. Nature Photon. 7, 545–549 (2013).
Tillmann, M. et al. Experimental boson sampling. Nature Photon. 7, 540–544 (2013).
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).
Predojevic, A., Grabher, S. & Weihs, G. Pulsed Sagnac source of polarisation entangled photon pairs. Opt. Express 20, 25022–25029 (2012).
Guerreiro, T. et al. High efficiency coupling of photon pairs in practice. Opt. Express 21, 27641–27651 (2013).
Silverstone, J. et al. On-chip quantum interference between two silicon waveguide sources. Nature Photon. 8, 104–108 (2013).
Matsuda, N. et al. A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2, 817 (2012).
Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nature Photon. 3, 696–705 (2009).
Gol'tsman, G. N. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705 (2001).
Pernice, W. H. P. et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nature Commun. 3, 1325 (2012).
Schuck, C., Pernice, W. H. P. & Tang, H. X. Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate. Sci. Rep. 3, 1893 (2013).
Acknowledgements
We are grateful for financial support from EPSRC, ERC, NSQI (S.G.). J.C.F.M. is supported by a Leverhulme Trust Early-Career Fellowship. J.L.O.B. acknowledges a Royal Society Wolfson Merit Award and a Royal Academy of Engineering Chair in Emerging Technologies. We thank P. Birchall, N. Brunner and C. Sparrow for helpful comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Shadbolt, P., Mathews, J., Laing, A. et al. Testing foundations of quantum mechanics with photons. Nature Phys 10, 278–286 (2014). https://doi.org/10.1038/nphys2931
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2931
This article is cited by
-
On the creation of a photon by an electromagnetic wave ball
Scientific Reports (2023)
-
The potential and global outlook of integrated photonics for quantum technologies
Nature Reviews Physics (2021)
-
Quantum double-double-slit experiment with momentum entangled photons
Scientific Reports (2020)
-
Quantum Mechanics and Its Interpretations: A Defense of the Quantum Principles
Foundations of Physics (2020)
-
Control over the transverse structure and long-distance fiber propagation of light at the single-photon level
Scientific Reports (2019)