Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum causality

Abstract

Traditionally, quantum theory assumes the existence of a fixed background causal structure. But if the laws of quantum mechanics are applied to the causal relations, then one could imagine situations in which the causal order of events is not always fixed, but is subject to quantum uncertainty. Such indefinite causal structures could make new quantum information processing tasks possible and provide methodological tools in quantum theories of gravity. Here, I review recent theoretical progress in this emerging area.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Different causal relations between events in Alice's and Bob's laboratories.
Figure 2: Superposition of quantum circuits.

References

  1. Pearl, J. Causality: Models, Reasoning, and Inference (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  2. Kochen, S. & Specker, E. P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967).

    MathSciNet  MATH  Google Scholar 

  3. Bell, J. S. On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964).

    Article  MathSciNet  Google Scholar 

  4. DeWitt, B. S. Quantum theory of gravity I. The canonical theory. Phys. Rev. 160, 1113–1148 (1967).

    Article  ADS  Google Scholar 

  5. Peres, A. Measurement of time by quantum clocks. Am. J. Phys. 48, 552–557 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  6. Wooters, W. K. 'Time' replaced by quantum correlations. Int. J. Theor. Phys. 23, 701–711 (1984).

    Article  MathSciNet  Google Scholar 

  7. Rovelli, C. Quantum mechanics without time: a model. Phys. Rev. D 42, 2638–2646 (1990).

    Article  ADS  Google Scholar 

  8. Isham, C. in Integrable Systems, Quantum Groups and Quantum Field Theory (ed. Ibort, R.) 157–287 (Kluwer, 1993).

    Book  Google Scholar 

  9. Gambini, R., Porto, R. A. & Pullin, J. A relational solution to the problem of time in quantum mechanics and quantum gravity: a fundamental mechanism for quantum decoherence. New J. Phys. 6, 45 (2004).

    Article  ADS  Google Scholar 

  10. Hardy, L. Probability theories with dynamic causal structure: a new framework for quantum gravity. Preprint at http://arxiv.org/abs/gr-qc/0509120 (2005).

  11. Hardy, L. Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure. J. Phys. A 40, 3081 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  12. Chiribella, G., D'Ariano, G. M., Perinotti, P. & Valiron, B. Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013).

    Article  ADS  Google Scholar 

  13. Oreshkov, O., Costa, F. & Brukner, C. Quantum correlations with no causal order. Nature Commun. 3, 1092 (2012).

    Article  ADS  Google Scholar 

  14. Leifer, M. S. & Spekkens, R. W. Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013).

    Article  ADS  Google Scholar 

  15. Müller, M. P. & Masanes, L. Three-dimensionality of space and the quantum bit: an information-theoretic approach. New J. Phys. 15, 053040 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  16. Dakic, B. & Brukner, C. in Quantum Theory: Informational Foundations and Foils (eds Chiribella, G. & Spekkens, R.) (Springer, in the press); Preprint at http://arxiv.org/abs/1307.3984 (2013).

    MATH  Google Scholar 

  17. Brukner, C., Taylor, S., Cheung, S. & Vedral, V. Quantum entanglement in time. Preprint at http://arxiv.org/abs/quant-ph/0402127v1 (2004).

  18. Leifer, M. S. Quantum dynamics as an analog of conditional probability. Phys. Rev. A 74, 042310 (2006).

    Article  ADS  Google Scholar 

  19. Marcovitch, S. & Reznik, B. Structural unification of space and time correlations in quantum theory. Preprint at http://arxiv.org/abs/1103.2557 (2011).

  20. Fitzsimons, J., Jones, J. & Vedral, V. Quantum correlations which imply causation. Preprint at http://arxiv.org/abs/1302.2731 (2013).

  21. Cirel'son, B. C. Quantum generalizations of Bell's inequality. Lett. Math. Phys. 4, 93 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  22. Leggett, A. J. & Garg, A. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  23. Fritz, T. Quantum correlations in the temporal Clauser–Horne–Shimony–Holt (CHSH) scenario. New J. Phys. 12, 083055 (2010).

    Article  ADS  Google Scholar 

  24. Budroni, C., Moroder, T., Kleinmann, M. & Gühne, O. Bounding temporal quantum correlations. Phys. Rev. Lett. 111, 020403 (2013).

    Article  ADS  Google Scholar 

  25. Markiewicz, M., Przysiezna, A., Brierley, S. & Paterek, T. Genuinely multi-point temporal quantum correlations. Preprint at http://arxiv.org/abs/1309.7650 (2013).

  26. Kleinmann, M., Gühne, O., Portillo, J. R., Larsson, J-Å. & Cabello, A. Memory cost of quantum contextuality. New J. Phys. 13, 113011 (2011).

    Article  ADS  Google Scholar 

  27. Hardy, L. Reformulating and reconstructing quantum theory. Preprint at http://arxiv.org/abs/1104.2066 (2011).

  28. Chiribella, G., D'Ariano, G. M. & Perinotti, P. Theoretical framework for quantum networks. Phys. Rev. A 80, 022339 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  29. Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 4, 275–278 (1972).

    Article  MathSciNet  Google Scholar 

  30. Choi, M-D. Completely positive linear maps on complex matrices. Lin. Alg. Applic. 10, 285–290 (1975).

    Article  MathSciNet  Google Scholar 

  31. Coecke, B. Kindergarten quantum mechanics. Preprint at http://arxiv.org/abs/quant-ph/0510032 (2005).

  32. Caves, C. M., Fuchs, C. A. & Schack, R. Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  33. Gödel, K. An example of a new type of cosmological solution of Einstein's field equations of gravitation. Rev. Mod. Phys. 21, 447–450 (1949).

    Article  ADS  MathSciNet  Google Scholar 

  34. Deutsch, D. Quantum mechanics near closed timelike lines. Phys. Rev. D 44, 3197–3217 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  35. Greenberger, D. M. & Svozil, K. in Quo Vadis Quantum Mechanics? (eds Elitzur A. Dolev, S. & Kolenda, N.) 63–72 (Springer, 2005).

    Book  Google Scholar 

  36. Svetlichny, G. Effective quantum time travel. Int. J. Theor. Phys. 50, 3903 (2011).

    Article  Google Scholar 

  37. Lloyd, S. et al. Closed timelike curves via post-selection: theory and experimental demonstration. Phys. Rev. Lett. 106, 040403 (2011).

    Article  ADS  Google Scholar 

  38. Gisin, N. Weinberg's non-linear quantum mechanics and supraluminal communications, Phys. Lett. A 143, 1–2 (1990).

    Article  ADS  Google Scholar 

  39. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969).

    Article  ADS  Google Scholar 

  40. Baumeler, Ä. & Wolf, S. Perfect signaling among three parties violating predefined causal order. Preprint at http://arxiv.org/abs/1312.5916 (2013).

  41. Greenberger, D., Horne, M., Shimony, A. & Zeilinger, A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  42. Hardy, L. in Proc. Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: Int. Conf. in Honour of Abner Shimony. Preprint at http://arxiv.org/abs/quant-ph/0701019 (2007).

    Google Scholar 

  43. Chiribella, G. Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301(R) (2012).

    Article  ADS  Google Scholar 

  44. Araújo, M., Costa, F. & Brukner, C. Decrease in query complexity for quantum computers with superposition of circuits. Preprint at http://arxiv.org/abs/1401.8127 (2014).

  45. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

Download references

Acknowledgements

I thank F. Costa, O. Oreshkov and J. Pienaar for discussions. This work was supported by the Austrian Science Fund (FWF) through FoQuS and individual project 24621, the European Commission Project RAQUEL, FQXi, and the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Časlav Brukner.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brukner, Č. Quantum causality. Nature Phys 10, 259–263 (2014). https://doi.org/10.1038/nphys2930

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing