Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The dynamics of quantum criticality revealed by quantum Monte Carlo and holography

Abstract

Understanding the dynamics of quantum systems without long-lived excitations (quasiparticles) constitutes an important yet challenging problem. Although numerical techniques can yield results for the dynamics in imaginary time, their reliable continuation to real time has proved difficult. We tackle this issue using the superfluid–insulator quantum critical point of bosons on a two-dimensional lattice, where quantum fluctuations destroy quasiparticles. We present quantum Monte Carlo simulations for two separate lattice realizations. Their low-frequency conductivities turn out to have the same universal dependence on imaginary frequency and temperature. Using the structure of the real-time dynamics of conformal field theories described by the holographic gauge/gravity duality, we then make progress on the problem of analytically continuing the numerical data to real time. Our method yields quantitative and experimentally testable results on the frequency-dependent conductivity near the quantum critical point. Extensions to other observables and universality classes are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probing quantum critical dynamics.
Figure 2: Quantum Monte Carlo data.
Figure 3: Holographic spacetime, which is asymptotically AdS and contains a planar black hole.
Figure 4: Holographic continuation.
Figure 5: Spectrum of quasinormal charge excitations of the superfluid-insulator QCP.
Figure 6: Quantum critical behaviour of the quantum rotor model.

Similar content being viewed by others

References

  1. Sachdev, S. & Keimer, B. Quantum criticality. Phys. Today 64, 29–35 (February, 2011).

    Article  Google Scholar 

  2. Villain, J. Theory of one- and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet. J. de Phys. 36, 581–590 (1975).

    Article  Google Scholar 

  3. Wallin, M., Sørensen, E. S., Girvin, S. M. & Young, A. P. Superconductor-insulator transition in two-dimensional dirty boson systems. Phys. Rev. B 49, 12115–12139 (1994).

    Article  ADS  Google Scholar 

  4. Spielman, I. B., Phillips, W. D. & Porto, J. V. Mott-insulator transition in a two-dimensional atomic Bose gas. Phys. Rev. Lett. 98, 080404 (2007).

    Article  ADS  Google Scholar 

  5. Zhang, X., Hung, C-L., Tung, S-K. & Chin, C. Observation of quantum criticality with ultracold atoms in optical lattices. Science 335, 1070–1072 (2012).

    Article  ADS  Google Scholar 

  6. Endres, M. et al. The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487, 454–458 (2012).

    Article  ADS  Google Scholar 

  7. Šmakov, J. & Sorensen, E. Universal scaling of the conductivity at the superfluid–insulator phase transition. Phys. Rev. Lett. 95, 180603 (2005).

    Article  ADS  Google Scholar 

  8. Damle, K. & Sachdev, S. Nonzero-temperature transport near quantum critical points. Phys. Rev. B 56, 8714–8733 (1997).

    Article  ADS  Google Scholar 

  9. Gazit, S., Podolsky, D., Auerbach, A. & Arovas, D. P. Dynamics and conductivity near quantum criticality. Phys. Rev. B 88, 235108 (2013).

    Article  ADS  Google Scholar 

  10. Maldacena, J. M. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  11. Kovtun, P. K. & Starinets, A. O. Quasinormal modes and holography. Phys. Rev. D 72, 086009 (2005).

    Article  ADS  Google Scholar 

  12. Witczak-Krempa, W. & Sachdev, S. The quasi-normal modes of quantum criticality. Phys. Rev. B 86, 235115 (2012).

    Article  ADS  Google Scholar 

  13. Witczak-Krempa, W. & Sachdev, S. Dispersing quasinormal modes in (2+1)-dimensional conformal field theories. Phys. Rev. B 87, 155149 (2013).

    Article  ADS  Google Scholar 

  14. Sorensen, E. S., Wallin, M., Girvin, S. M. & Young, A. P. Universal conductivity of dirty bosons at the superconductor–insulator transition. Phys. Rev. Lett. 69, 828–831 (1992).

    Article  ADS  Google Scholar 

  15. Chubukov, A. V., Sachdev, S. & Ye, J. Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state. Phys. Rev. B 49, 11919–11961 (1994).

    Article  ADS  Google Scholar 

  16. Rançon, A., Kodio, O., Dupuis, N. & Lecheminant, P. Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions. Phys. Rev. E 88, 012113 (2013).

    Article  ADS  Google Scholar 

  17. Hartnoll, S. in Understanding Quantum Phase Transitions. Series: Condensed Matter Physics (ed Carr, L.) 701–723 (CRC Press, 2010).

    Book  Google Scholar 

  18. McGreevy, J. Holographic duality with a view toward many-body physics. Adv. High Energy Phys. 2010, 723105 (2010).

    Article  Google Scholar 

  19. Sachdev, S. Quantum magnetism and criticality. Nature Phys. 4, 173–185 (2008).

    Article  ADS  Google Scholar 

  20. Lee, S-S. TASI lectures on emergence of supersymmetry, gauge theory and string in condensed matter systems. Preprint at http://arxiv.org/abs/1009.5127 (2010)

  21. Sachdev, S. What can gauge-gravity duality teach us about condensed matter physics?. Ann. Rev. Condens. Matt. Phys. 3, 9–33 (2012).

    Article  Google Scholar 

  22. Ritz, A. & Ward, J. Weyl corrections to holographic conductivity. Phys. Rev. D79, 066003 (2009).

    ADS  Google Scholar 

  23. Myers, R. C., Sachdev, S. & Singh, A. Holographic quantum critical transport without self-duality. Phys. Rev. D 83, 066017 (2011).

    Article  ADS  Google Scholar 

  24. Aharony, O., Bergman, O., Jafferis, D. L. & Maldacena, J. N = 6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 0810, 091 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  25. Herzog, C. P., Kovtun, P., Sachdev, S. & Son, D. T. Quantum critical transport, duality, and M-theory. Phys. Rev. D75, 085020 (2007).

    ADS  MathSciNet  Google Scholar 

  26. Šmakov, J. & Sørensen, E. S. Universal scaling of the conductivity at the superfluid–insulator phase transition. Phys. Rev. Lett. 95, 180603 (2005).

    Article  ADS  Google Scholar 

  27. Cha, M-C., Fisher, M. P. A., Girvin, S. M., Wallin, M. & Young, A. P. Universal conductivity of two-dimensional films at the superconductor–insulator transition. Phys. Rev. B 44, 6883–6902 (1991).

    Article  ADS  Google Scholar 

  28. Fazio, R. & Zappalà, D. ε expansion of the conductivity at the superconductor–Mott-insulator transition. Phys. Rev. B 53, 8883 (1996).

    Article  ADS  Google Scholar 

  29. Witczak-Krempa, W. Quantum critical charge response from higher derivatives: is more different? Preprint at http://arxiv.org/abs/1312.3334 (2013)

  30. Gulotta, D. R., Herzog, C. P. & Kaminski, M. Sum rules from an extra dimension. J. High Energy Phys. 1101, 148 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  31. Witczak-Krempa, W., Ghaemi, P., Senthil, T. & Kim, Y. B. Universal transport near a quantum critical Mott transition in two dimensions. Phys. Rev. B 86, 245102 (2012).

    Article  ADS  Google Scholar 

  32. Fritz, L., Schmalian, J., Müller, M. & Sachdev, S. Quantum critical transport in clean graphene. Phys. Rev. B 78, 085416 (2008).

    Article  ADS  Google Scholar 

  33. Pomeau, Y. & Résibois, P. Time dependent correlation functions and mode-mode coupling theories. Phys. Rep. 19, 63–139 (1975).

    Article  ADS  Google Scholar 

  34. Kovtun, P. Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. Math. Gen. 45, 3001 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  35. Alet, F. & Sørensen, E. S. Cluster Monte Carlo algorithm for the quantum rotor model. Phys. Rev. E 67, 015701 (2003).

    Article  ADS  Google Scholar 

  36. Alet, F. & Sørensen, E. S. Directed geometrical worm algorithm applied to the quantum rotor model. Phys. Rev. E 68, 026702 (2003).

    Article  ADS  Google Scholar 

  37. Haviland, D. B., Liu, Y. & Goldman, A. M. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989).

    Article  ADS  Google Scholar 

  38. Neuhaus, T., Rajantie, A. & Rummukainen, K. Numerical study of duality and universality in a frozen superconductor. Phys. Rev. B 67, 014525 (2003).

    Article  ADS  Google Scholar 

  39. Chen, K., Liu, L., Deng, Y., Pollet, L. & Prokof’ev, N. Universal conductivity in a two-dimensional superfluid-to-insulator quantum critical system. Phys. Rev. Lett. 2014, 030402

Download references

Acknowledgements

We are grateful to R. Myers and S-S. Lee for answering our questions and making many useful suggestions. We further acknowledge insightful discussions with J. Bhaseen, J. Carrasquilla, K. Chen, D. Chowdhury, A.G. Green, J. McGreevy, L. Pollet, N. Prokof’ev, S. Raju, A. Singh and J. Sonner. While the present paper was being completed we learned of ref. 39, which we have found helpful in improving the accuracy of some of our numerical results. E.S.S. acknowledges allocation of computing time at the Shared Hierarchical Academic Research Computing Network (SHARCNET:www.sharcnet.ca) and support by NSERC. S.S. was supported by the NSF under Grant DMR-1103860 and by the Templeton Foundation. This research was supported in part by Perimeter Institute for Theoretical Physics (W.W-K. and S.S.). Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

Author information

Authors and Affiliations

Authors

Contributions

E.S.S. performed the large-scale simulations. All authors contributed equally to the analysis of the data and writing of the manuscript.

Corresponding author

Correspondence to William Witczak-Krempa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 545 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witczak-Krempa, W., Sørensen, E. & Sachdev, S. The dynamics of quantum criticality revealed by quantum Monte Carlo and holography. Nature Phys 10, 361–366 (2014). https://doi.org/10.1038/nphys2913

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing