Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bidirectional and efficient conversion between microwave and optical light

Abstract

Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical fibre transmission, enabling information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors through low-loss optical fibres and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. Here we demonstrate a converter that provides a bidirectional, coherent and efficient link between the microwave and optical portions of the electromagnetic spectrum. We use our converter to transfer classical signals between microwave and optical light with conversion efficiencies of 10%, and achieve performance sufficient to transfer quantum states if the device were further precooled from its current 4 K operating temperature to temperatures below 40 mK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layout and operation of microwave-to-optical converter.
Figure 2: Measurement network.
Figure 3: Bidirectional and efficient conversion.
Figure 4: Optically detected signal-to-noise ratio.

Similar content being viewed by others

References

  1. Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    Article  ADS  Google Scholar 

  2. Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

    Article  ADS  Google Scholar 

  3. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

  4. O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  5. Buluta, I., Ashhab, S. & Nori, F. Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011).

    Article  ADS  Google Scholar 

  6. Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005).

    Article  ADS  Google Scholar 

  7. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    Article  ADS  Google Scholar 

  8. Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).

    Article  ADS  Google Scholar 

  9. Lucero, E. et al. Computing prime factors with a Josephson phase qubit quantum processor. Nature Phys. 8, 719–723 (2012).

    Article  ADS  Google Scholar 

  10. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  11. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  12. Tsang, M. Cavity quantum electro-optics. Phys. Rev. A 81, 063837 (2010).

    Article  ADS  Google Scholar 

  13. Tsang, M. Cavity quantum electro-optics. II. input–output relations between traveling optical and microwave fields. Phys. Rev. A 84, 043845 (2011).

    Article  ADS  Google Scholar 

  14. Cohen, D. A., Hossein-Zadeh, M. & Levi, A. F. J. Microphotonic modulator for microwave receiver. Electron. Lett. 37, 300–301 (2001).

    Article  Google Scholar 

  15. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Whispering-gallery-mode electro-optic modulator and photonic microwave receiver. J. Opt. Soc. Am. B 20, 333–342 (2003).

    Article  ADS  Google Scholar 

  16. Savchenkov, A. A. et al. Tunable optical single-sideband modulator with complete sideband suppression. Opt. Lett. 34, 1300–1302 (2009).

    Article  ADS  Google Scholar 

  17. Hafezi, M. et al. Atomic interface between microwave and optical photons. Phys. Rev. A 85, 020302 (2012).

    Article  ADS  Google Scholar 

  18. Verdú, J. et al. Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103, 043603 (2009).

    Article  ADS  Google Scholar 

  19. Imamoğlu, A. Cavity QED based on collective magnetic dipole coupling: Spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009).

    Article  ADS  Google Scholar 

  20. Marcos, D. et al. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys. Rev. Lett. 105, 210501 (2010).

    Article  ADS  Google Scholar 

  21. Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon-photon translator. New J. Phys. 13, 013017 (2011).

    Article  ADS  Google Scholar 

  22. Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys.: Conf. Ser. 264, 012025 (2011).

    Google Scholar 

  23. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nature Phys. 9, 712–716 (2013).

    Article  ADS  Google Scholar 

  24. Braginsky, V., Manukin, A. B. & Tikhonov, M. Y. Investigation of dissipative ponderomotive effects of electromagnetic radiation. J. Exp. Theor. Phys. 31, 829–830 (1970).

    ADS  Google Scholar 

  25. Gozzini, A., Maccarrone, F., Mango, F., Longo, I. & Barbarino, S. Light-pressure bistability at microwave frequencies. J. Opt. Soc. Am. B 2, 1841–1845 (1985).

    Article  ADS  Google Scholar 

  26. Dorsel, A., McCullen, J. D., Meystre, P., Vignes, E. & Walther, H. Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550–1553 (1983).

    Article  ADS  Google Scholar 

  27. Braginsky, V. & Manukin, A. B. Ponderomotive effects of electromagnetic radiation. J. Exp. Theor. Phys. 25, 563–655 (1967).

    Google Scholar 

  28. Caves, C. M. Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75–79 (1980).

    Article  ADS  Google Scholar 

  29. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  ADS  Google Scholar 

  30. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  31. Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).

    Article  ADS  Google Scholar 

  32. Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013).

    Article  ADS  Google Scholar 

  33. Tian, L. & Wang, H. Optical wavelength conversion of quantum states with optomechanics. Phys. Rev. A 82, 053806 (2010).

    Article  ADS  Google Scholar 

  34. Wang, Y-D. & Clerk, A. A. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012).

    Article  ADS  Google Scholar 

  35. Tian, L. Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012).

    Article  ADS  Google Scholar 

  36. Barzanjeh, Sh., Abdi, M., Milburn, G. J., Tombesi, P. & Vitali, D. Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012).

    Article  ADS  Google Scholar 

  37. McGee, S. A., Meiser, D., Regal, C. A., Lehnert, K. W. & Holland, M. J. Mechanical resonators for storage and transfer of electrical and optical quantum states. Phys. Rev. A 87, 053818 (2013).

    Article  ADS  Google Scholar 

  38. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  39. Purdy, T. P., Peterson, R. W. & Regal, C. A. Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801–804 (2013).

    Article  ADS  Google Scholar 

  40. Yu, P-L., Purdy, T. P. & Regal, C. A. Control of material damping in high-Q membrane microresonators. Phys. Rev. Lett. 108, 083603 (2012).

    Article  ADS  Google Scholar 

  41. Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Preprint at http://arxiv.org/abs/1307.3467 (2013).

  42. Akram, U., Kiesel, N. N., Aspelmeyer, M. & Milburn, G. J. Single-photon opto-mechanics in the strong coupling regime. New J. Phys. 12, 083030 (2010).

    Article  ADS  Google Scholar 

  43. Zhang, J., Peng, K. & Braunstein, S. L. Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003).

    Article  ADS  Google Scholar 

  44. Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nature Commun. 3, 1196 (2012).

    Article  ADS  Google Scholar 

  45. Law, C. K. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys. Rev. A 51, 2537–2541 (1995).

    Article  ADS  Google Scholar 

  46. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  ADS  Google Scholar 

  47. Purdy, T. P., Peterson, R. W., Yu, P-L. & Regal, C. A. Cavity optomechanics with Si3N4 membranes at cryogenic temperatures. New J. Phys. 14, 115021 (2012).

    Article  ADS  Google Scholar 

  48. Wang, Y-D. & Clerk, A. A. Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013).

    Article  ADS  Google Scholar 

  49. Tian, L. Robust photon entanglement via quantum interference in optomechanical interfaces. Phys. Rev. Lett. 110, 233602 (2013).

    Article  ADS  Google Scholar 

  50. Kuzyk, M. C., van Enk, S. J. & Wang, H. Generating robust optical entanglement in weak-coupling optomechanical systems. Phys. Rev. A 88, 062341 (2013).

    Article  ADS  Google Scholar 

  51. Zwickl, B. M. et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DARPA QuASAR programme and the National Science Foundation under grant number 1125844. We would like to thank D. R. Schmidt for sharing his knowledge of fabrication techniques, J. N. Ullom for lending us equipment and P-L. Yu, J. D. Teufel and J. Kerckhoff for discussions. C.A.R. thanks the Clare Boothe Luce Foundation for support.

Author information

Authors and Affiliations

Authors

Contributions

R.W.A. and R.W.P. made the measurements and analysed the data. R.W.A., R.W.P. and T.P.P. designed and constructed the experimental apparatus and optical device. R.W.A., K.C. and R.W.S. designed the electrical device. R.W.A. and K.C. fabricated the electrical device. C.A.R., R.W.S. and K.W.L. planned and supervised the experiment. R.W.A., R.W.P., C.A.R. and K.W.L. wrote the manuscript. All authors commented on the results and manuscript.

Corresponding author

Correspondence to R. W. Andrews.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5932 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, R., Peterson, R., Purdy, T. et al. Bidirectional and efficient conversion between microwave and optical light. Nature Phys 10, 321–326 (2014). https://doi.org/10.1038/nphys2911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing