Abstract
Converting low-frequency electrical signals into much higher-frequency optical signals has enabled modern communication networks to leverage the strengths of both microfabricated electrical circuits and optical fibre transmission, enabling information networks to grow in size and complexity. A microwave-to-optical converter in a quantum information network could provide similar gains by linking quantum processors through low-loss optical fibres and enabling a large-scale quantum network. However, no current technology can convert low-frequency microwave signals into high-frequency optical signals while preserving their fragile quantum state. Here we demonstrate a converter that provides a bidirectional, coherent and efficient link between the microwave and optical portions of the electromagnetic spectrum. We use our converter to transfer classical signals between microwave and optical light with conversion efficiencies of ∼10%, and achieve performance sufficient to transfer quantum states if the device were further precooled from its current 4 K operating temperature to temperatures below 40 mK.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).
Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).
Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: An outlook. Science 339, 1169–1174 (2013).
O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).
Buluta, I., Ashhab, S. & Nori, F. Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011).
Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005).
Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).
Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).
Lucero, E. et al. Computing prime factors with a Josephson phase qubit quantum processor. Nature Phys. 8, 719–723 (2012).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Tsang, M. Cavity quantum electro-optics. Phys. Rev. A 81, 063837 (2010).
Tsang, M. Cavity quantum electro-optics. II. input–output relations between traveling optical and microwave fields. Phys. Rev. A 84, 043845 (2011).
Cohen, D. A., Hossein-Zadeh, M. & Levi, A. F. J. Microphotonic modulator for microwave receiver. Electron. Lett. 37, 300–301 (2001).
Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Whispering-gallery-mode electro-optic modulator and photonic microwave receiver. J. Opt. Soc. Am. B 20, 333–342 (2003).
Savchenkov, A. A. et al. Tunable optical single-sideband modulator with complete sideband suppression. Opt. Lett. 34, 1300–1302 (2009).
Hafezi, M. et al. Atomic interface between microwave and optical photons. Phys. Rev. A 85, 020302 (2012).
Verdú, J. et al. Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103, 043603 (2009).
Imamoğlu, A. Cavity QED based on collective magnetic dipole coupling: Spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009).
Marcos, D. et al. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys. Rev. Lett. 105, 210501 (2010).
Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon-photon translator. New J. Phys. 13, 013017 (2011).
Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys.: Conf. Ser. 264, 012025 (2011).
Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nature Phys. 9, 712–716 (2013).
Braginsky, V., Manukin, A. B. & Tikhonov, M. Y. Investigation of dissipative ponderomotive effects of electromagnetic radiation. J. Exp. Theor. Phys. 31, 829–830 (1970).
Gozzini, A., Maccarrone, F., Mango, F., Longo, I. & Barbarino, S. Light-pressure bistability at microwave frequencies. J. Opt. Soc. Am. B 2, 1841–1845 (1985).
Dorsel, A., McCullen, J. D., Meystre, P., Vignes, E. & Walther, H. Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550–1553 (1983).
Braginsky, V. & Manukin, A. B. Ponderomotive effects of electromagnetic radiation. J. Exp. Theor. Phys. 25, 563–655 (1967).
Caves, C. M. Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75–79 (1980).
Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).
Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012).
Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013).
Tian, L. & Wang, H. Optical wavelength conversion of quantum states with optomechanics. Phys. Rev. A 82, 053806 (2010).
Wang, Y-D. & Clerk, A. A. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012).
Tian, L. Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012).
Barzanjeh, Sh., Abdi, M., Milburn, G. J., Tombesi, P. & Vitali, D. Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012).
McGee, S. A., Meiser, D., Regal, C. A., Lehnert, K. W. & Holland, M. J. Mechanical resonators for storage and transfer of electrical and optical quantum states. Phys. Rev. A 87, 053818 (2013).
Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).
Purdy, T. P., Peterson, R. W. & Regal, C. A. Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801–804 (2013).
Yu, P-L., Purdy, T. P. & Regal, C. A. Control of material damping in high-Q membrane microresonators. Phys. Rev. Lett. 108, 083603 (2012).
Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Preprint at http://arxiv.org/abs/1307.3467 (2013).
Akram, U., Kiesel, N. N., Aspelmeyer, M. & Milburn, G. J. Single-photon opto-mechanics in the strong coupling regime. New J. Phys. 12, 083030 (2010).
Zhang, J., Peng, K. & Braunstein, S. L. Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003).
Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nature Commun. 3, 1196 (2012).
Law, C. K. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys. Rev. A 51, 2537–2541 (1995).
Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).
Purdy, T. P., Peterson, R. W., Yu, P-L. & Regal, C. A. Cavity optomechanics with Si3N4 membranes at cryogenic temperatures. New J. Phys. 14, 115021 (2012).
Wang, Y-D. & Clerk, A. A. Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013).
Tian, L. Robust photon entanglement via quantum interference in optomechanical interfaces. Phys. Rev. Lett. 110, 233602 (2013).
Kuzyk, M. C., van Enk, S. J. & Wang, H. Generating robust optical entanglement in weak-coupling optomechanical systems. Phys. Rev. A 88, 062341 (2013).
Zwickl, B. M. et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).
Acknowledgements
This work was supported by the DARPA QuASAR programme and the National Science Foundation under grant number 1125844. We would like to thank D. R. Schmidt for sharing his knowledge of fabrication techniques, J. N. Ullom for lending us equipment and P-L. Yu, J. D. Teufel and J. Kerckhoff for discussions. C.A.R. thanks the Clare Boothe Luce Foundation for support.
Author information
Authors and Affiliations
Contributions
R.W.A. and R.W.P. made the measurements and analysed the data. R.W.A., R.W.P. and T.P.P. designed and constructed the experimental apparatus and optical device. R.W.A., K.C. and R.W.S. designed the electrical device. R.W.A. and K.C. fabricated the electrical device. C.A.R., R.W.S. and K.W.L. planned and supervised the experiment. R.W.A., R.W.P., C.A.R. and K.W.L. wrote the manuscript. All authors commented on the results and manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 5932 kb)
Rights and permissions
About this article
Cite this article
Andrews, R., Peterson, R., Purdy, T. et al. Bidirectional and efficient conversion between microwave and optical light. Nature Phys 10, 321–326 (2014). https://doi.org/10.1038/nphys2911
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2911