Abstract
Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure of symmetry breaking results in a nontrivial finite-temperature phase diagram, but the thermodynamics of the SO-coupled Bose gas at finite temperature remains unknown both in theory and experiment. Here we experimentally determine a new finite-temperature phase transition that is consistent with the transition between the stripe ordered phase and the magnetized phase. We also observe that the magnetic phase and the Bose condensate transitions occur simultaneously as temperature decreases. We determine the entire finite-temperature phase diagram of the SO-coupled Bose gas, thus illustrating the power of quantum simulation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Spin-orbital-angular-momentum-coupled quantum gases
AAPPS Bulletin Open Access 05 December 2022
-
Emergent gauge field and the Lifshitz transition of spin-orbit coupled bosons in one dimension
Scientific Reports Open Access 16 May 2019
-
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate
Nature Communications Open Access 22 January 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Lin, Y-J., Jiménez-García, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).
Wang, P. et al. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012).
Cheuk, L. M. et al. Spin-injection spectroscopy of a spin–orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012).
Zhang, J-Y. et al. Collective dipole oscillation of a spin–orbit coupled Bose–Einstein condensate. Phys. Rev. Lett. 109, 115301 (2012).
Williams, R. A. et al. Synthetic partial waves in ultracold atomic collisions. Science 335, 314–317 (2012).
Qu, C., Hamner, C., Gong, M., Zhang, C. & Engels, P. Observation of Zitterbewegung in a spin–orbit-coupled Bose–Einstein condensate. Phys. Rev. A 88, 021604(R) (2013).
Zhang, L. et al. Stability of excited dressed states with spin–orbit coupling. Phys. Rev. A 87, 011601(R) (2013).
Wang, C., Gao, C., Jian, C-M. & Zhai, H. Spin–orbit coupled spinor Bose–Einstein condensates. Phys. Rev. Lett. 105, 160403 (2010).
Ho, T-L. & Zhang, S. Bose–Einstein condensates with spin–orbit interaction. Phys. Rev. Lett. 107, 150403 (2011).
Li, Y., Pitaevskii, L. P. & Stringari, S. Quantum tricriticality and phase transitions in spin–orbit coupled Bose–Einstein condensates. Phys. Rev. Lett. 108, 225301 (2012).
Wu, C-J., Mondragon-Shem, I. & Zhou, X-F. Unconventional Bose–Einstein condensations from spin–orbit coupling. Chin. Phys. Lett. 28, 097102 (2011).
Jian, C-M. & Zhai, H. Paired superfluidity and fractionalized vortices in systems of spin–orbit coupled bosons. Phys. Rev. B 84, 060508(R) (2011).
Gopalakrishnan, S., Lamacraft, A. & Goldbart, P. M. Universal phase structure of dilute Bose gases with Rashba spin–orbit coupling. Phys. Rev. A 84, 061604(R) (2011).
Ozawa, T. & Baym, G. Stability of ultracold atomic Bose condensates with Rashba spin–orbit coupling against quantum and thermal fluctuations. Phys. Rev. Lett. 109, 025301 (2012).
Cui, X. & Zhou, Q. Enhancement of condensate depletion due to spin–orbit coupling. Phys. Rev. A 87, 031604(R) (2013).
Zheng, W., Yu, Z-Q., Cui, X. & Zhai, H. Properties of Bose gases with Raman-induced spin–orbit coupling. J. Phys. B 46, 134007 (2013).
Sedrakyan, T. A., Kamenev, A. & Glazman, L. I. Composite fermion state of spin–orbit-coupled bosons. Phys. Rev. A 86, 063639 (2012).
Zhu, Q., Zhang, C. & Wu, B. Exotic superfluidity in spin–orbit coupled Bose–Einstein condensates. Europhys. Lett. 100, 50003 (2012).
Martone, G. I., Li, Y., Pitaevskii, L. P. & Stringari, S. Anisotropic dynamics of a spin–orbit coupled Bose–Einstein condensate. Phys. Rev. A 86, 063621 (2012).
Mukerjee, S., Xu, C. & Moore, J. E. Topological defects and the superfluid transition of the s=1 spinor condensate in two dimensions. Phys. Rev. Lett. 97, 120406 (2006).
James, A. J. A. & Lamacraft, A. Phase diagram of two-dimensional polar condensates in a magnetic field. Phys. Rev. Lett. 106, 140402 (2011).
Shi, Y., Lamacraft, A. & Fendley, P. Boson pairing and unusual criticality in a generalized XY model. Phys. Rev. Lett. 107, 240601 (2011).
Spielman, I. B. Raman process and effective gauge potentials. Phys. Rev. A 79, 063613 (2009).
Wheatley, J. C. Experimental properties of superfluid 3He. Rev. Mod. Phys. 47, 415–470 (1975).
de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs system. Nature 453, 899–902 (2008).
Fang, C., Yao, H., Tsai, W-F., Hu, J-P. & Kivelson, S. A. Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).
Xu, C-K., Müller, M. & Sachdev, S. Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501(R) (2008).
Li, Y., Martone, G. I., Pitaevskii, L. P. & Stringari, S. Superstripes and the excitation spectrum of a spin–orbit-coupled Bose–Einstein condensate. Phys. Rev. Lett. 110, 235302 (2013).
Acknowledgements
We acknowledge insightful discussions with C. Chin and T-L. Ho. S. C. thanks B. Zhao for his careful reading of the manuscript. This work has been supported by the NNSF of China, the CAS, the National Fundamental Research Program (under Grant No. 2011CB921300, No. 2011CB921500), NSERC and Tsinghua University Initiative Scientific Research Program.
Author information
Authors and Affiliations
Contributions
S.C. and J-W.P. planned and supervised the project. S-C.J., J-Y.Z., Z-D.D. and S.C. performed the experiments, L.Z., W.Z., Y-J.D. and H.Z. provided theoretical support, and all the authors contributed to analysis of the data and writing the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 483 kb)
Rights and permissions
About this article
Cite this article
Ji, SC., Zhang, JY., Zhang, L. et al. Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas. Nature Phys 10, 314–320 (2014). https://doi.org/10.1038/nphys2905
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2905
This article is cited by
-
Spin-orbital-angular-momentum-coupled quantum gases
AAPPS Bulletin (2022)
-
Engineering symmetry breaking in 2D layered materials
Nature Reviews Physics (2021)
-
Emergent gauge field and the Lifshitz transition of spin-orbit coupled bosons in one dimension
Scientific Reports (2019)
-
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate
Nature Communications (2019)
-
Spin Mixing Dynamics in a Spin–Orbit Coupled Bose–Einstein Condensate
Journal of Low Temperature Physics (2019)