Article | Published:

Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas

Nature Physics volume 10, pages 314320 (2014) | Download Citation

Abstract

Spin–orbit (SO) coupling leads to numerous phenomena in electron systems. Artificial SO coupling in ultracold neutral atoms provides the opportunity to study such phenomena in bosonic systems, which exhibit superfluidity and various symmetry-breaking condensate phases. In general, a richer structure of symmetry breaking results in a nontrivial finite-temperature phase diagram, but the thermodynamics of the SO-coupled Bose gas at finite temperature remains unknown both in theory and experiment. Here we experimentally determine a new finite-temperature phase transition that is consistent with the transition between the stripe ordered phase and the magnetized phase. We also observe that the magnetic phase and the Bose condensate transitions occur simultaneously as temperature decreases. We determine the entire finite-temperature phase diagram of the SO-coupled Bose gas, thus illustrating the power of quantum simulation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  2. 2.

    & Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  3. 3.

    , & Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

  4. 4.

    et al. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012).

  5. 5.

    et al. Spin-injection spectroscopy of a spin–orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012).

  6. 6.

    et al. Collective dipole oscillation of a spin–orbit coupled Bose–Einstein condensate. Phys. Rev. Lett. 109, 115301 (2012).

  7. 7.

    et al. Synthetic partial waves in ultracold atomic collisions. Science 335, 314–317 (2012).

  8. 8.

    , , , & Observation of Zitterbewegung in a spin–orbit-coupled Bose–Einstein condensate. Phys. Rev. A 88, 021604(R) (2013).

  9. 9.

    et al. Stability of excited dressed states with spin–orbit coupling. Phys. Rev. A 87, 011601(R) (2013).

  10. 10.

    , , & Spin–orbit coupled spinor Bose–Einstein condensates. Phys. Rev. Lett. 105, 160403 (2010).

  11. 11.

    & Bose–Einstein condensates with spin–orbit interaction. Phys. Rev. Lett. 107, 150403 (2011).

  12. 12.

    , & Quantum tricriticality and phase transitions in spin–orbit coupled Bose–Einstein condensates. Phys. Rev. Lett. 108, 225301 (2012).

  13. 13.

    , & Unconventional Bose–Einstein condensations from spin–orbit coupling. Chin. Phys. Lett. 28, 097102 (2011).

  14. 14.

    & Paired superfluidity and fractionalized vortices in systems of spin–orbit coupled bosons. Phys. Rev. B 84, 060508(R) (2011).

  15. 15.

    , & Universal phase structure of dilute Bose gases with Rashba spin–orbit coupling. Phys. Rev. A 84, 061604(R) (2011).

  16. 16.

    & Stability of ultracold atomic Bose condensates with Rashba spin–orbit coupling against quantum and thermal fluctuations. Phys. Rev. Lett. 109, 025301 (2012).

  17. 17.

    & Enhancement of condensate depletion due to spin–orbit coupling. Phys. Rev. A 87, 031604(R) (2013).

  18. 18.

    , , & Properties of Bose gases with Raman-induced spin–orbit coupling. J. Phys. B 46, 134007 (2013).

  19. 19.

    , & Composite fermion state of spin–orbit-coupled bosons. Phys. Rev. A 86, 063639 (2012).

  20. 20.

    , & Exotic superfluidity in spin–orbit coupled Bose–Einstein condensates. Europhys. Lett. 100, 50003 (2012).

  21. 21.

    , , & Anisotropic dynamics of a spin–orbit coupled Bose–Einstein condensate. Phys. Rev. A 86, 063621 (2012).

  22. 22.

    , & Topological defects and the superfluid transition of the s=1 spinor condensate in two dimensions. Phys. Rev. Lett. 97, 120406 (2006).

  23. 23.

    & Phase diagram of two-dimensional polar condensates in a magnetic field. Phys. Rev. Lett. 106, 140402 (2011).

  24. 24.

    , & Boson pairing and unusual criticality in a generalized XY model. Phys. Rev. Lett. 107, 240601 (2011).

  25. 25.

    Raman process and effective gauge potentials. Phys. Rev. A 79, 063613 (2009).

  26. 26.

    Experimental properties of superfluid 3He. Rev. Mod. Phys. 47, 415–470 (1975).

  27. 27.

    et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs system. Nature 453, 899–902 (2008).

  28. 28.

    , , , & Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).

  29. 29.

    , & Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501(R) (2008).

  30. 30.

    , , & Superstripes and the excitation spectrum of a spin–orbit-coupled Bose–Einstein condensate. Phys. Rev. Lett. 110, 235302 (2013).

Download references

Acknowledgements

We acknowledge insightful discussions with C. Chin and T-L. Ho. S. C. thanks B. Zhao for his careful reading of the manuscript. This work has been supported by the NNSF of China, the CAS, the National Fundamental Research Program (under Grant No. 2011CB921300, No. 2011CB921500), NSERC and Tsinghua University Initiative Scientific Research Program.

Author information

Author notes

    • Si-Cong Ji

    These authors contributed equally to this work.

Affiliations

  1. Shanghai Branch, Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China

    • Si-Cong Ji
    • , Jin-Yi Zhang
    • , Long Zhang
    • , Zhi-Dong Du
    • , You-Jin Deng
    • , Shuai Chen
    •  & Jian-Wei Pan
  2. Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

    • Si-Cong Ji
    • , Jin-Yi Zhang
    • , Long Zhang
    • , Zhi-Dong Du
    • , You-Jin Deng
    • , Shuai Chen
    •  & Jian-Wei Pan
  3. Institute for Advanced Study, Tsinghua University, Beijing 100084, China

    • Wei Zheng
    •  & Hui Zhai

Authors

  1. Search for Si-Cong Ji in:

  2. Search for Jin-Yi Zhang in:

  3. Search for Long Zhang in:

  4. Search for Zhi-Dong Du in:

  5. Search for Wei Zheng in:

  6. Search for You-Jin Deng in:

  7. Search for Hui Zhai in:

  8. Search for Shuai Chen in:

  9. Search for Jian-Wei Pan in:

Contributions

S.C. and J-W.P. planned and supervised the project. S-C.J., J-Y.Z., Z-D.D. and S.C. performed the experiments, L.Z., W.Z., Y-J.D. and H.Z. provided theoretical support, and all the authors contributed to analysis of the data and writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jin-Yi Zhang or Shuai Chen or Jian-Wei Pan.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2905

Further reading