Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

What drives nematic order in iron-based superconductors?

Abstract

Although the existence of nematic order in iron-based superconductors is now a well-established experimental fact, its origin remains controversial. Nematic order breaks the discrete lattice rotational symmetry by making the x and y directions in the iron plane non-equivalent. This can happen because of a regular structural transition or as the result of an electronically driven instability — in particular, orbital order or spin-driven Ising-nematic order. The latter is a magnetic state that breaks rotational symmetry but preserves time-reversal symmetry. Symmetry dictates that the development of one of these orders immediately induces the other two, making the origin of nematicity a physics realization of the ‘chicken and egg problem’. In this Review, we argue that the evidence strongly points to an electronic mechanism of nematicity, placing nematic order in the class of correlation-driven electronic instabilities, like superconductivity and density-wave transitions. We discuss different microscopic models for nematicity and link them to the properties of the magnetic and superconducting states, providing a unified perspective on the phase diagram of the iron pnictides.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic phase diagram of hole-doped and electron-doped iron pnictides of the BaFe2As2 family.
Figure 2: Manifestations of nematic order in the iron pnictides.
Figure 3: Nematic order in both real and momentum space.
Figure 4: Evolution of the character of the magnetic and nematic transitions in the spin-driven nematic theory.
Figure 5: Hierarchy of the electronic ordered states of FeSCs for two different types of inter-pocket interaction.

References

  1. Paglione, J. & Greene, R. L. High-temperature superconductivity in iron-based materials. Nature Phys. 6, 645–658 (2010).

    ADS  Article  Google Scholar 

  2. Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    ADS  Article  Google Scholar 

  3. Chubukov, A. V. Pairing mechanism in Fe-based superconductors. Annu. Rev. Condens. Matter Phys. 3, 57–92 (2012).

    Article  Google Scholar 

  4. Avci, S. et al. Phase diagram of (Ba1−xKx)Fe2As2 . Phys. Rev. B 85, 184507 (2012).

    Article  ADS  Google Scholar 

  5. Kim, M. G. et al. Character of the structural and magnetic phase transitions in the parent and electron-doped BaFe2As2 compounds. Phys. Rev. B 83, 134522 (2011).

    Article  ADS  Google Scholar 

  6. Rotundu, C. R. & Birgeneau, R. J. First- and second-order magnetic and structural transitions in Ba(Fe1−xCox)2As2 . Phys. Rev. B 84, 092501 (2011).

    Article  ADS  Google Scholar 

  7. Kasahara, S. et al. Electronic nematicity above the structural and superconducting transition in BaFe2(As1−xPx)2 . Nature 486, 382–385 (2012).

    Article  ADS  Google Scholar 

  8. Zhou, R. et al. Quantum criticality in electron-doped BaFe2−xNixAs2 . Nature Comm. 4, 2265 (2013).

    Article  ADS  Google Scholar 

  9. Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    Article  ADS  Google Scholar 

  10. Fang, C., Yao, H., Tsai, W-F., Hu, J. & Kivelson, S. A. Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).

    Article  ADS  Google Scholar 

  11. Xu, C., Muller, M. & Sachdev, S. Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501(R) (2008).

    Article  ADS  Google Scholar 

  12. Chandra, P., Coleman, P. & Larkin, A. I. Ising transition in frustrated Heisenberg models. Phys. Rev. Lett. 64, 88–91 (1990).

    Article  ADS  Google Scholar 

  13. Chu, J-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    Article  ADS  Google Scholar 

  14. Tanatar, M. A. et al. Uniaxial-strain mechanical detwinning of CaFe2As2 and BaFe2As2 crystals: Optical and transport study. Phys. Rev. B 81, 184508 (2010).

    Article  ADS  Google Scholar 

  15. Yi, M. et al. Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1−xCox)2As2 above the spin density wave transition. Proc. Natl Acad. Sci. USA 108, 6878–6883 (2011).

    Article  ADS  Google Scholar 

  16. Chu, J-H et al. In-plane electronic anisotropy in underdoped Ba(Fe1−xCox)2As2 revealed by partial detwinning in a magnetic field. Phys. Rev. B 81, 214502 (2010).

    Article  ADS  Google Scholar 

  17. Nakajima, M. et al. Effect of Co doping on the in-plane anisotropy in the optical spectrum of underdoped Ba(Fe1−xCox)2As2 . Phys. Rev. Lett. 109, 217003 (2012).

    Article  ADS  Google Scholar 

  18. Jiang, S. et al. Thermopower as a sensitive probe of electronic nematicity in iron pnictides. Phys. Rev. Lett. 110, 067001 (2013).

    Article  ADS  Google Scholar 

  19. Dusza, A. et al. Anisotropic charge dynamics in detwinned Ba(Fe1−xCox)2As2 . Europhys. Lett. 93, 37002 (2011).

    Article  ADS  Google Scholar 

  20. Nakajima, M. et al. Unprecedented anisotropic metallic state in undoped iron arsenide BaFe2As2 revealed by optical spectroscopy. Proc. Natl Acad. Sci. USA 108, 12238–12242 (2011).

    Article  ADS  Google Scholar 

  21. Fernandes, R. M. & Schmalian, J. Manifestations of nematic degrees of freedom in the magnetic, elastic, and superconducting properties of the iron pnictides. Supercond. Sci. Technol. 25, 084005 (2012).

    Article  ADS  Google Scholar 

  22. Cvetkovic, V. & Vafek, O. Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors. Phys. Rev. B 88, 134510 (2013).

    Article  ADS  Google Scholar 

  23. Fu, M. et al. NMR search for the spin nematic state in LaFeAsO single crystal. Phys. Rev. Lett. 109, 247001 (2012).

    Article  ADS  Google Scholar 

  24. Dhital, C. et al. Effect of uniaxial strain on the structural and magnetic phase transitions in BaFe2As2 . Phys. Rev. Lett. 108, 087001 (2012).

    Article  ADS  Google Scholar 

  25. Hu, J., Setty, C. & Kivelson, S. Pressure effects on magnetically driven electronic nematic states in iron pnictide superconductors. Phys. Rev. B 85, 100507 (2012).

    Article  ADS  Google Scholar 

  26. Chuang, T-M. et al. Nematic electronic structure in the parent state of the iron-based superconductor Ca(Fe1−xCox)2As2 . Science 327, 181–184 (2010).

    ADS  Article  Google Scholar 

  27. Rosenthal, E. P. et al. Visualization of electron nematicity and unidirectional antiferroic fluctuations at high temperatures in NaFeAs. Nature Phys.http://dx.doi.org/10.1038/nphys2870 (2014)

  28. Nandi, S. et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. Lett. 104, 057006 (2010).

    Article  ADS  Google Scholar 

  29. Fernandes, R. M. et al. Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors. Phys. Rev. Lett. 105, 157003 (2010).

    Article  ADS  Google Scholar 

  30. Yoshizawa, M. et al. Structural quantum criticality and superconductivity in iron-based superconductor Ba(Fe1−xCox)2As2 . J. Phys. Soc. Jpn 81, 024604 (2012).

    Article  ADS  Google Scholar 

  31. Böhmer, A. E. et al. Nematic susceptibility of hole- and electron-doped BaFe2As2 iron-based superconductors. Preprint at http://arxiv.org/abs/1305.3515 (2013)

  32. Gallais, Y. et al. Observation of incipient charge nematicity in Ba(Fe1−xCox)2As2 . Phys. Rev. Lett. 111, 267001 (2013).

    Article  ADS  Google Scholar 

  33. Chu, J-H. et al. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  ADS  Google Scholar 

  34. Fernandes, R. M., Chubukov, A. V., Knolle, J., Eremin, I. & Schmalian, J. Preemptive Nematic order pseudogap, and orbital order in the iron pnictides. Phys. Rev. B 85, 024534 (2012).

    Article  ADS  Google Scholar 

  35. Ortenzi, L., Cappelluti, E., Benfatto, L. & Pietronero, L. Fermi surface shrinking and interband coupling in iron-based pnictides. Phys. Rev. Lett. 103, 046404 (2009).

    Article  ADS  Google Scholar 

  36. Yin, Z. P., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nature Mater. 10, 932–935 (2011).

    Article  ADS  Google Scholar 

  37. Hardy, F. et al. Evidence of strong correlations and coherence-incoherence crossover in the iron pnictide superconductor KFe2As2 . Phys. Rev. Lett. 111, 027002 (2013).

    Article  ADS  Google Scholar 

  38. Chubukov, A. V., Efremov, D. V. & Eremin, I. Magnetism, superconductivity, and pairing symmetry in iron-based superconductors. Phys. Rev. B 78, 134512 (2008).

    Article  ADS  Google Scholar 

  39. Eremin, I. & Chubukov, A. V. Magnetic degeneracy and hidden metallicity of the spin-density-wave state in ferrophictides. Phys. Rev. B 81, 024511 (2010).

    Article  ADS  Google Scholar 

  40. Dai, P., Hu, J. & Dagotto, E. Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nature Phys. 8, 709–718 (2012).

    Article  ADS  Google Scholar 

  41. Brydon, P. M. R., Schmiedt, J. & Timm, C. Microscopically derived Ginzburg-Landau theory for magnetic order in the iron pnictides. Phys. Rev. B 84, 214510 (2011).

    Article  ADS  Google Scholar 

  42. Kamiya, Y., Kawashima, N. & Batista, C. D. Dimensional crossover in the quasi-two-dimensional Ising-O(3) model. Phys. Rev. B 84, 214429 (2011).

    Article  ADS  Google Scholar 

  43. Qi, Y. & Xu, C. Global phase diagram for magnetism and lattice distortion of iron-pnictide materials. Phys. Rev. B 80, 094402 (2009).

    Article  ADS  Google Scholar 

  44. Cano, A., Civelli, M., Eremin, I. & Paul, I. Interplay of magnetic and structural transitions in Fe-based pnictide superconductors. Phys. Rev. B 82, 020408(R) (2010).

    Article  ADS  Google Scholar 

  45. Onari, S. & Kontani, H. Self-consistent vertex correction analysis for iron-based superconductors: Mechanism of Coulomb interaction-driven orbital fluctuations. Phys. Rev. Lett. 109, 137001 (2012).

    Article  ADS  Google Scholar 

  46. Lv, W. & Phillips, P. Orbitally and magnetically induced anisotropy in iron-based superconductors. Phys. Rev. B 84, 174512 (2011).

    Article  ADS  Google Scholar 

  47. Liang, S., Moreo, A. & Dagotto, E. Nematic state of pnictides stabilized by interplay between spin, orbital, and lattice degrees of freedom. Phys. Rev. Lett. 111, 047004 (2013).

    Article  ADS  Google Scholar 

  48. Lee, C. C., Yin, W. G. & Ku, W. Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).

    Article  ADS  Google Scholar 

  49. Krüger, F. S., Kumar, J., Zaanen, J. & van den Brink, Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors. Phys. Rev. B 79, 054504 (2009).

    Article  ADS  Google Scholar 

  50. Applegate, R., Singh, R. R. P., Chen, C-C. & Devereaux, T. P. Phase transitions in spin-orbital models with spin-space anisotropies for iron pnictides: Monte Carlo simulations. Phys. Rev. B 85, 054411 (2012).

    Article  ADS  Google Scholar 

  51. Yamase, H. & Zeyher, R. Superconductivity from orbital nematic fluctuations. Phys. Rev. B 88, 180502(R) (2013).

    Article  ADS  Google Scholar 

  52. Stanev, V. & Littlewood, P. B. Nematicity driven by hybridization in iron-based superconductors. Phys. Rev. B 87, 161122(R) (2013).

    Article  ADS  Google Scholar 

  53. Kang, J. & Tesanovic, Z. Theory of the valley-density wave and hidden order in iron pnictides. Phys. Rev. B 83, 020505 (2011).

    Article  ADS  Google Scholar 

  54. Henley, C. L. Ordering due to disorder in a frustrated vector antiferromagnet. Phys. Rev. Lett. 62, 2056–2059 (1989).

    Article  ADS  Google Scholar 

  55. Lorenzana, J., Seibold, G., Ortix, C. & Grilli, M. Competing orders in FeAs layers. Phys. Rev. Lett. 101, 186402 (2008).

    Article  ADS  Google Scholar 

  56. Avci, S. et al. The origin of nematic order in the iron-based superconductors. Preprint at http://arxiv.org/abs/1303.2647 (2013)

  57. Kim, M. G. et al. Antiferromagnetic ordering in the absence of a structural distortion in Ba(Fe1−xMnx)2As2 . Phys. Rev. B 82, 220503(R) (2010).

    Article  ADS  Google Scholar 

  58. Valenzuela, B., Bascones, E. & Calderon, M. J. Conductivity anisotropy in the antiferromagnetic state of iron pnictides. Phys. Rev. Lett. 105, 207202 (2010).

    Article  ADS  Google Scholar 

  59. Chen, C-C., Maciejko, J., Sorini, A. P., Moritz, B., Singh, R. R. P. & Devereaux, T. P. Orbital order and spontaneous orthorhombicity in iron pnictides. Phys. Rev. B 82, 100504 (2010).

    Article  ADS  Google Scholar 

  60. Fernandes, R. M., Abrahams, E. & Schmalian, J. Anisotropic in-plane resistivity in the nematic phase of the iron pnictides. Phys. Rev. Lett. 107, 217002 (2011).

    Article  ADS  Google Scholar 

  61. Blomberg, E. C. et al. Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides. Nature Commun. 4, 1914 (2013).

    Article  ADS  Google Scholar 

  62. Goswami, P., Yu, R., Si, Q. & Abrahams, E. Spin dynamics of a J1 − J2 antiferromagnet and its implications for iron pnictides. Phys. Rev. B 84, 155108 (2011).

    Article  ADS  Google Scholar 

  63. Ma, L. et al. 23Na and 75As NMR study of antiferromagnetism and spin fluctuations in NaFeAs single crystals. Phys. Rev. B 83, 132501 (2011).

    Article  ADS  Google Scholar 

  64. Shimojima, T. et al. Pseudogap formation above the superconducting dome in iron-pnictides. Phys. Rev. B 89, 045101 (2013).

    Article  ADS  Google Scholar 

  65. Lee, W-C. & Phillips, P. W. Non-Fermi liquid due to orbital fluctuations in iron pnictide superconductors. Phys. Rev. B 86, 245113 (2012).

    Article  ADS  Google Scholar 

  66. Arham, H. Z. et al. Detection of orbital fluctuations above the structural transition temperature in the iron pnictides and chalcogenides. Phys. Rev. B 85, 214515 (2012).

    Article  ADS  Google Scholar 

  67. Fernandes, R. M., Böhmer, A. E., Meingast, C. & Schmalian, J. Scaling between magnetic and lattice fluctuations in iron-pnictide superconductors. Phys. Rev. Lett. 111, 137001 (2013).

    Article  ADS  Google Scholar 

  68. Moon, E. G. & Sachdev, S. Competition between superconductivity and nematic order: Anisotropy of superconducting coherence length. Phys. Rev. B 85, 184511 (2012).

    Article  ADS  Google Scholar 

  69. Reid, J-Ph. et al. Universal heat conduction in the iron-arsenide superconductor KFe2As2: Evidence of a d-wave state. Phys. Rev. Lett. 109, 087001 (2012).

    Article  ADS  Google Scholar 

  70. Fernandes, R. M. & Millis, A. J. Nematicity as a probe of superconducting pairing in iron-based superconductors. Phys. Rev. Lett. 111, 127001 (2013).

    Article  ADS  Google Scholar 

  71. Livanas, G., Aperis, A., Kotetes, P. & Varelogiannis, G. Nematicity from mixed s+− + states in iron-based superconductors. Preprint at http://arxiv.org/abs/1208.2881 (2012)

  72. Yang, F., Wang, F. & Lee, D-H. Fermiology, orbital order, orbital fluctuation and cooper pairing in iron-based superconductors. Phys. Rev. B 88, 100504 (2013).

    Article  ADS  Google Scholar 

  73. Fernandes, R. M., Maiti, S., Wölfle, P. & Chubukov, A. V. How many quantum phase transitions exist inside the superconducting dome of the iron pnictides?. Phys. Rev. Lett. 111, 057001 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with E. Abrahams, J. Analytis, E. Bascones, A. Böhmer, J. van den Brink, P. Brydon, S. Bud’ko, P. Canfield, P. Chandra, P. Dai, M. Daghofer, L. Degiorgi, I. Eremin, I. Fisher, Y. Gallais, A. Goldman, A. Kaminski, J. Kang, V. Keppens, D. Khalyavin, M. Khodas, S. Kivelson, J. Knolle, H. Kontani, A. Kreyssig, F. Krüger, W. Ku, W.C. Lee, J. Lorenzana, W. Lv, S. Maiti, D. Mandrus, R. McQueeney, Y. Matsuda, I. Mazin, C. Meingast, A. Millis, P. Orth, R. Osborn, A. Pasupathy, I. Paul, P. Phillips, R. Prozorov, S. Sachdev, Q. Si, T. Shibauchi, L. Taillefer, M. Takigawa, M. Tanatar, M. Vavilov, P. Wölfle and M. Yoshizawa. The authors benefited much from discussions with our colleague Z. Tesanovic, who unexpectedly passed away last year. A.V.C. is supported by the Office of Basic Energy Sciences US Department of Energy under the grant #DE-FG02-ER46900. J.S. is supported by the Deutsche Forschungsgemeinschaft through DFG-SPP 1458 ‘Hochtemperatursupraleitung in Eisenpniktiden’.

Author information

Authors and Affiliations

Authors

Contributions

All authors were responsible for writing and revising the paper.

Corresponding authors

Correspondence to R. M. Fernandes, A. V. Chubukov or J. Schmalian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernandes, R., Chubukov, A. & Schmalian, J. What drives nematic order in iron-based superconductors?. Nature Phys 10, 97–104 (2014). https://doi.org/10.1038/nphys2877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2877

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing