Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Crystallization

Colloidal suspense

According to classical nucleation theory, a crystal grows from a small nucleus that already bears the symmetry of its end phase — but experiments with colloids now reveal that, from an amorphous precursor, crystallites with different structures can develop.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal nucleation in colloidal suspensions is a two-step process, the first of which involves the formation of amorphous precursors with different types of short-range order.

References

  1. Tan, P., Xu, N. & Xu, L. Nature Phys. 10, 73–79 (2014).

    Article  ADS  Google Scholar 

  2. Kawasaki, T. & Tanaka, H. Proc. Natl Acad. Sci. USA 107, 14036–14041 (2010).

    Article  ADS  Google Scholar 

  3. Schöpe, H. J., Bryant, G. & van Megen, W. Phys. Rev. Lett. 96, 175701 (2006).

    Article  ADS  Google Scholar 

  4. Zhang, T. H. & Liu, X. Y. J. Am. Chem. Soc. 129, 13520–13526 (2007).

    Article  Google Scholar 

  5. Savage, J. R. & Dinsmore, A. D. Phys. Rev. Lett. 102, 198302 (2009).

    ADS  Google Scholar 

  6. Schilling, T., Schöpe, H. J., Oettel, M., Opletal, G. & Snook, I. Phys. Rev. Lett. 105, 025701 (2010).

    Article  ADS  Google Scholar 

  7. Lutsko, J. F. & Nicolis, G. Phys. Rev. Lett. 96, 046102 (2006).

    Article  ADS  Google Scholar 

  8. Tóth, G. I., Pusztai, T., Tegze, G., Tóth, G. & Gránásy, L. Phys. Rev. Lett. 107, 175702 (2011).

    Article  ADS  Google Scholar 

  9. Lechner, W. & Dellago, C. J. Chem. Phys. 129, 114707 (2008).

    Article  ADS  Google Scholar 

  10. Barros, K. & Klein, W. J. Chem. Phys. 139, 174505 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to László Gránásy or Gyula I. Tóth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gránásy, L., Tóth, G. Colloidal suspense. Nature Phys 10, 12–13 (2014). https://doi.org/10.1038/nphys2849

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing