Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization

Abstract

When a system undergoes a transition from a liquid to a solid phase, it passes through multiple intermediate structures before reaching the final state. However, our knowledge on the exact pathways of this process is limited, mainly owing to the difficulty of realizing direct observations. Here, we experimentally study the evolution of symmetry and density for various colloidal systems during liquid-to-solid phase transitions, and visualize kinetic pathways with single-particle resolution. We observe the formation of relatively ordered precursor structures with different symmetries, which then convert into metastable solids. During this conversion, two major cross-symmetry pathways always occur, regardless of the final state and the interaction potential. In addition, we find a broad decoupling of density variation and symmetry development, and discover that nucleation rarely starts from the densest regions. These findings hold for all of our samples, suggesting the possibility of finding a unified picture for the complex crystallization kinetics in colloidal systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of nuclei and precursors in early crystallization.
Figure 2: Kinetic pathways during crystallization.
Figure 3: Local density evolution throughout crystallization.

Similar content being viewed by others

References

  1. Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 22, 289–330 (1897).

    Google Scholar 

  2. Alexander, S. & McTague, J. Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702–705 (1978).

    Article  ADS  Google Scholar 

  3. Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714–2717 (1995).

    Article  ADS  Google Scholar 

  4. Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932–9947 (1996).

    Article  ADS  Google Scholar 

  5. Shen, Y. C. & Oxtoby, D. W. bcc symmetry in the crystal-melt interface of Lennard-Jones fluids examined through density functional theory. Phys. Rev. Lett. 77, 3585–3588 (1996).

    Article  ADS  Google Scholar 

  6. Auer, S. & Frenkel, D. Crystallization of weakly charged colloidal spheres: A numerical study. J. Phys. Condens. Matter 14, 7667–7680 (2002).

    Article  ADS  Google Scholar 

  7. Moroni, D., ten Wolde, P. R. & Bolhuis, P. G. Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005).

    Article  ADS  Google Scholar 

  8. Russo, J. & Tanaka, H. Selection mechanism of polymorphs in the crystal nucleation of the Gaussian core model. Soft Matter 8, 4206–4215 (2012).

    Article  ADS  Google Scholar 

  9. Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    Article  ADS  Google Scholar 

  10. Pusey, P. N. et al. Structure of crystals of hard colloidal spheres. Phys. Rev. Lett. 63, 2753–2756 (1989).

    Article  ADS  Google Scholar 

  11. Zhu, J. et al. Crystallization of hard-sphere colloids in microgravity. Nature 387, 883–885 (1997).

    Article  ADS  Google Scholar 

  12. Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

    Article  ADS  Google Scholar 

  13. Auer, S. & Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001).

    Article  ADS  Google Scholar 

  14. TenWolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  Google Scholar 

  15. Kawasaki, T. & Tanaka, H. Formation of a crystal nucleus from liquid. Proc. Natl Acad. Sci. USA 107, 14036–14041 (2010).

    Article  ADS  Google Scholar 

  16. Russo, J. & Tanaka, H. The microscopic pathway to crystallization in supercooled liquids. Sci. Rep. 2, 505 (2012).

    Article  ADS  Google Scholar 

  17. Schilling, T., Schöpe, H. J., Oettel, M., Opletal, G. & Snook, I. Precursor-mediated crystallization process in suspensions of hard spheres. Phys. Rev. Lett. 105, 025701 (2010).

    Article  ADS  Google Scholar 

  18. Tóth, G. I., Pusztai, T., Tegze, G., Tóth, G. & Gránásy, L. Amorphous nucleation precursor in highly nonequilibrium fluids. Phys. Rev. Lett. 107, 175702 (2011).

    Article  ADS  Google Scholar 

  19. Lechner, W., Dellago, C. & Bolhuis, P. G. Role of the prestructured surface cloud in crystal nucleation. Phys. Rev. Lett. 106, 085701 (2011).

    Article  ADS  Google Scholar 

  20. Lutsko, J. F. & Nicolis, G. Theoretical evidence for a dense fluid precursor to crystallization. Phys. Rev. Lett. 96, 046102 (2006).

    Article  ADS  Google Scholar 

  21. Martin, S., Bryant, G. & van Megen, W. Crystallization kinetics of polydisperse colloidal hard spheres: Experimental evidence for local fractionation. Phys. Rev. E 67, 061405 (2003).

    Article  ADS  Google Scholar 

  22. Schöpe, H. J., Bryant, G. & van Megen, W. Two-step crystallization kinetics in colloidal hard-sphere systems. Phys. Rev. Lett. 96, 175701 (2006).

    Article  ADS  Google Scholar 

  23. Iacopini, S., Palberg, T. & Schöpe, H. J. Crystallization kinetics of polydisperse hard-sphere-like microgel colloids: Ripening dominated crystal growth above melting. J. Chem. Phys. 130, 084502 (2009).

    Article  ADS  Google Scholar 

  24. Savage, J. R. & Dinsmore, A. D. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 198302 (2009).

    Article  ADS  Google Scholar 

  25. Larsen, A. E. & Grier, D. G. Like-charge attractions in metastable colloidal crystallites. Nature 385, 230–233 (1997).

    Article  ADS  Google Scholar 

  26. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  ADS  Google Scholar 

  27. Anderson, V. J. & Lekkerkerker, H. N. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

    Article  ADS  Google Scholar 

  28. Schall, P., Cohen, I., Weitz, D. A. & Spaepen, F. Visualization of dislocation dynamics in colloidal crystals. Science 305, 1944–1948 (2004).

    Article  ADS  Google Scholar 

  29. Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J. & Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005).

    Article  ADS  Google Scholar 

  30. Savage, J. R., Blair, D. W., Levine, A. J., Guyer, R. A. & Dinsmore, A. D. Imaging the sublimation dynamics of colloidal crystallites. Science 314, 795–798 (2006).

    Article  ADS  Google Scholar 

  31. Lu, P. J., Zaccarelli, E., Ciulla, F., Schofield, A. B., Sciortino, F. & Weitz, D. A. Gelation of particles with short-range attraction. Nature 453, 499–503 (2008).

    Article  ADS  Google Scholar 

  32. Wang, Z. R., Wang, F., Peng, Y., Zheng, Z. Y. & Han, Y. L. Imaging the homogeneous nucleation during the melting of superheated colloidal crystals. Science 338, 87–90 (2012).

    Article  ADS  Google Scholar 

  33. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  ADS  Google Scholar 

  34. Tan, P., Xu, N., Schofield, A. & Xu, L. Understanding the low-frequency quasilocalized modes in disordered colloidal systems. Phys. Rev. Lett. 108, 095501 (2012).

    Article  ADS  Google Scholar 

  35. Hynninen, A. & Dijkstra, M. Phase diagrams of hard-core repulsive Yukawa particles. Phys. Rev. E 68, 021407 (2003).

    Article  ADS  Google Scholar 

  36. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  ADS  Google Scholar 

  37. Ten Wolde, P., Ruiz-Montero, M. J. & Frenkel, D. Simulation of homogeneous crystal nucleation close to coexistence. Faraday Discuss. 104, 93–110 (1996).

    Article  ADS  Google Scholar 

  38. Lechner, W. & Dellago, C. Crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    Article  ADS  Google Scholar 

  39. Anikeenko, A. V. & Medvedev, N. N. Polytetrahedral nature of the dense disordered packings of hard spheres. Phys. Rev. Lett. 98, 235504 (2007).

    Article  ADS  Google Scholar 

  40. Meijer, E. J. & Frenkel, D. Melting line of Yukawa system by computer simulation. J. Chem. Phys. 94, 2269–2271 (1991).

    Article  ADS  Google Scholar 

  41. Zahn, K. & Maret, G. Dynamic criteria for melting in two dimensions. Phys. Rev. Lett. 85, 3656–3659 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.T. and L.X. are supported by the Research Grants Council of Hong Kong (GRF grant CUHK404211, ECS grant CUHK404912, CUHK Direct Grant 4053021), and N.X. is supported by the National Natural Science Foundation of China (No. 91027001 and 11074228), the National Basic Research Program of China (973 Program No. 2012CB821500), the CAS 100-Talent Program (No. 2030020004), and Fundamental Research Funds for the Central Universities (No. 2340000034). We thank H. Tanaka and E. Sloutskin for helpful discussions, and A. Schofield for providing the particles.

Author information

Authors and Affiliations

Authors

Contributions

P.T. and L.X. conceived and designed the experiments, P.T. performed the experiments, P.T., N.X. and L.X. analysed the data, P.T. developed the new approach of local bond order analysis, and P.T. and L.X. wrote the paper.

Corresponding author

Correspondence to Lei Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1186 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 4169 kb)

Supplementary Movie

Supplementary Movie 2 (AVI 4101 kb)

Supplementary Movie

Supplementary Movie 3 (AVI 4423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, P., Xu, N. & Xu, L. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nature Phys 10, 73–79 (2014). https://doi.org/10.1038/nphys2817

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing