Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The fate of statistical isotropy

Subjects

The latest data from the Planck satellite have consolidated our understanding of the cosmic microwave background and the early Universe — except for some large-angle anomalies. These effects could be accounted for by invoking SU(2) gauge symmetry for photon propagation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dipole-subtracted map of CMB temperature anisotropies in the galactic coordinate system, from data collected by the Planck satellite.

ESA/Planck

Figure 2: Multipole spectrum and temperature–temperature correlation from Planck19.
Figure 3: Dynamical breaking of statistical isotropy17.

References

  1. Ade, P. A. R. et al. Preprint at http://arxiv.org/abs/1303.5082v1 (2013).

  2. Planck, M. Verh. Deut. Physik. Gesell. 2, 237–245 (1900).

    Google Scholar 

  3. Mather, J. C. et al. Astrophys. J. 354, L37–L40 (1990).

    Article  ADS  Google Scholar 

  4. Fixsen, D. J. et al. Astrophys. J. 734, 5 (2011).

    Article  ADS  Google Scholar 

  5. Peebles, P. J. & Wilkinson, D. T. Phys. Rev. 174, 2168 (1968).

    Article  ADS  Google Scholar 

  6. Tegmark, M., de Oliveira-Costa, A. & Hamilton, A. J. Phys. Rev. D 68, 123523 (2003).

    Article  ADS  Google Scholar 

  7. De Oliveira-Costa, A. et al. Phys. Rev. D 69, 063516 (2004).

    Article  ADS  Google Scholar 

  8. Copi, C. J. et al. Mon. Not. R. Astron. Soc. 367, 79–102 (2006).

    Article  ADS  Google Scholar 

  9. Ade, P. A. R. et al. Preprint at http://arxiv.org/abs/1303.5083v1 (2013).

  10. Vielva, P. Adv. Astron. 2010, 592094 (2010).

  11. Riess, A. et al. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  12. Perlmutter, S. et al. Astrophys. J. 517, 565–586 (1998).

    Article  ADS  Google Scholar 

  13. Ade, P. A. R. et al. Preprint at http://arxiv.org/abs/1303.5076v1 (2013).

  14. Freedman, W. L. Proc. Int. Astron. Union 8, S289, 3 (2012).

    Article  Google Scholar 

  15. Ahn, C. P. et al. Astron. J. Suppl. Ser. 203, 21 (2012).

    Article  ADS  Google Scholar 

  16. Gordon, C., Huterer, W. & Crawford, T. Phys. Rev. D 72, 103002 (2005).

    Article  ADS  Google Scholar 

  17. Hofmann, R. The Thermodynamics of Quantum Yang–Mills Theory: Theory and Applications (World Scientific, 2012).

    MATH  Google Scholar 

  18. Maltoni, M. et al. New J. Phys. 6, 122 (2004).

    Article  ADS  Google Scholar 

  19. Ade, P. A. R. et al. Preprint at http://arxiv.org/abs/1303.5062v1 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hofmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, R. The fate of statistical isotropy. Nature Phys 9, 686–689 (2013). https://doi.org/10.1038/nphys2793

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2793

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing