Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vibrational and electronic dynamics of nitrogen–vacancy centres in diamond revealed by two-dimensional ultrafast spectroscopy

Abstract

The optical and material properties of negatively charged nitrogen–vacancy (NV) centres in diamond make them attractive for applications ranging from quantum information to electromagnetic sensing. These properties are strongly dependent on the vibrational manifold associated with the centre, which determines phenomena associated with decoherence, relaxation and spin–orbit coupling. Despite its paramount importance in tuning these properties, the role of the vibrational bath and its effect on the electronic-state dynamics of NV centres in diamond is not fully understood. To elucidate the role of the bath, we present two-dimensional electronic spectroscopic studies of ensembles of negatively charged NV defect centres in diamond (NVD). We observe picosecond non-radiative relaxation within the phonon sideband and find that strongly coupled local modes dominate the vibrational bath. These findings provide a starting point for new insights into dephasing, spin addressing and relaxation in NVD with broad implications for magnetometry, quantum information, nanophotonics, sensing and ultrafast spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of the negatively charged NVD.
Figure 2: 2DES measurement of NV defect centres.
Figure 3: Vibrational modes associated with emission at the ZPL transition energy.
Figure 4: Comparison between calculated and measured 2DES and linear absorption signals.

Similar content being viewed by others

References

  1. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  ADS  Google Scholar 

  2. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    Article  ADS  Google Scholar 

  3. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  ADS  Google Scholar 

  4. Gurudev Dutt, M. V. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  5. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  ADS  Google Scholar 

  6. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  7. Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nature Photon. 6, 299–303 (2012).

    Article  ADS  Google Scholar 

  8. Maurer, P. C. et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nature Phys. 6, 912–918 (2010).

    Article  ADS  Google Scholar 

  9. Rand, S., Lenef, A. & Brown, S. Zeeman coherence and quantum beats in ultrafast photon echoes of N-V centers in diamond. J. Lumin. 6061, 739–741 (1994).

    Article  Google Scholar 

  10. Lenef, A. et al. Electronic structure of the N-V center in diamond: Experiments. Phys. Rev. B 53, 13427–13440 (1996).

    Article  ADS  Google Scholar 

  11. Acosta, V. M., Jarmola, A., Bauch, E. & Budker, D. Optical properties of the nitrogen-vacancy singlet levels in diamond. Phys. Rev. B 82, 201202R (2010).

    Article  ADS  Google Scholar 

  12. Davies, G. & Hamer, M. F. Optical studies of the 1.945 eV vibronic band in diamond. Proc. R. Soc. A 348, 285–298 (1976).

    Article  ADS  Google Scholar 

  13. Collins, A. T., Stanley, M. & Woods, G. S. Nitrogen isotope effects in synthetic diamonds. J. Phys. D 20, 969–974 (1987).

    Article  ADS  Google Scholar 

  14. Zaitsev, A. M. Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B 61, 12909–12922 (2000).

    Article  ADS  Google Scholar 

  15. Zhang, J., Wang, C-Z., Zhu, Z. Z. & Dobrovitski, V. V. Vibrational modes and lattice distortion of a nitrogen-vacancy center in diamond from first-principles calculations. Phys. Rev. B 84, 035211 (2011).

    Article  ADS  Google Scholar 

  16. Ginsberg, N. S., Cheng, Y-C. & Fleming, G. R. Two-dimensional electronic spectroscopy of molecular aggregates. Acc. Chem. Res. 42, 1352–1363 (2009).

    Article  Google Scholar 

  17. Brixner, T., Mancal, T., Stiopkin, I. V. & Fleming, G. R. Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121, 4221–4236 (2004).

    Article  ADS  Google Scholar 

  18. Cho, M., Brixner, T., Stiopkin, I. V., Vaswani, H. & Fleming, G. R. Two dimensional electronic spectroscopy of molecular complexes. J. Chin. Chem. Soc. 53, 15–24 (2006).

    Google Scholar 

  19. Rogers, L. J., Armstrong, S., Sellars, M. J. & Manson, N. B. Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies. New J. Phys. 10, 103024 (2008).

    Article  ADS  Google Scholar 

  20. Christensson, N. et al. High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures. J. Phys. Chem. B 115, 5383–5391 (2011).

    Article  Google Scholar 

  21. Farrow, D. A., Smith, E. R., Qian, W. & Jonas, D. M. The polarization anisotropy of vibrational quantum beats in resonant pump-probe experiments: Diagrammatic calculations for square symmetric molecules. J. Chem. Phys. 129, 174509 (2008).

    Article  ADS  Google Scholar 

  22. Bixon, M. & Jortner, J. Intramolecular radiationless transitions. J. Chem. Phys. 48, 715–726 (1968).

    Article  ADS  Google Scholar 

  23. Huxter, V. M. & Scholes, G. D. Acoustic phonon strain induced mixing of the fine structure levels in colloidal CdSe quantum dots observed by a polarization grating technique. J. Chem. Phys. 132, 104506 (2010).

    Article  ADS  Google Scholar 

  24. Abtew, T. A. et al. Dynamic Jahn–Teller effect in the NV center in diamond. Phys. Rev. Lett. 107, 146403 (2011).

    Article  ADS  Google Scholar 

  25. Jiang, X., Harzer, J. V., Hillebrands, B., Wild, C. & Koidl, P. Brillouin Light scattering on chemical-vapor-deposited polycrystalline diamond: Evaluation of the elastic moduli. Appl. Phys. Lett. 59, 1055–1057 (1991).

    Article  ADS  Google Scholar 

  26. Zaitsev, A. M. Optical Properties of Diamond, A Data Handbook (Springer, 2001).

    Book  Google Scholar 

  27. Cho, M. Two-Dimensional Optical Spectroscopy (CRC Press, 2009).

    Book  Google Scholar 

  28. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).

    Google Scholar 

  29. Zhao, Y. & Knox, R. S. A Brownian oscillator approach to the Kennard-Stepanov relation. J. Phys. Chem. A 104, 7751–7761 (2000).

    Article  Google Scholar 

  30. Ye, J., Zhao, Y., Ng, N. & Cao, J. Width of phonon sidebands in the Brownian oscillator model. J. Phys. Chem. B 113, 5897–5904 (2009).

    Article  Google Scholar 

  31. Jang, S., Cao, J. & Silbey, R. J. On the temperature dependence of molecular line shapes due to linearly coupled phonon bands. J. Phys. Chem. B 106, 8313–8317 (2002).

    Article  Google Scholar 

  32. Brixner, T., Stiopkin, I. & Fleming, G. R. Tunable two-dimensional femtosecond spectroscopy. Opt. Lett. 29, 884–886 (2004).

    Article  ADS  Google Scholar 

  33. Xu, Q-H., Ma, Y-Z. & Fleming, G. R. Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method. Chem. Phys. Lett. 338, 254–262 (2001).

    Article  ADS  Google Scholar 

  34. Gali, A., Simon, T. & Lowther, J. E. An ab initio study of local vibration modes of the nitrogen-vacancy center in diamond. New J. Phys. 13, 025016 (2011).

    Article  ADS  Google Scholar 

  35. Manson, N. B. & McMurtrie, R. L. Issues concerning the nitrogen-vacancy center in diamond. J. Lumin. 127, 98–103 (2007).

    Article  Google Scholar 

  36. Collins, A. T. & Woods, G. S. An anomaly in the infrared absorption spectrum of synthetic diamond. Phil. Mag. B 46, 77–83 (1982).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Gali for initially suggesting ultrafast measurements with nitrogen–vacancy-diamond, A. Jarmola for preparing the nitrogen–vacancy-diamond sample, and N. Manson and P. Kehayias for helpful discussions. V.M.H. thanks the National Science and Engineering Research Council of Canada for a postdoctoral fellowship. D.B. was supported by NSF and the AFOSR/DARPA QuASAR programme. The work by V.M.H., T.A.A.O. and G.R.F. was supported by NSF grant CHE-1012168.

Author information

Authors and Affiliations

Authors

Contributions

V.M.H., D.B. and G.R.F. conceived the experiment. D.B. and G.R.F. supervised the project. V.M.H. determined the experimental protocol, wrote and performed the simulation, analysed the data and wrote the manuscript. V.M.H. and T.A.A.O. collected the data. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to G. R. Fleming.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huxter, V., Oliver, T., Budker, D. et al. Vibrational and electronic dynamics of nitrogen–vacancy centres in diamond revealed by two-dimensional ultrafast spectroscopy. Nature Phys 9, 744–749 (2013). https://doi.org/10.1038/nphys2753

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing