Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Quantum materials

Shape resonances in superstripes

The significance of 'stripes' in certain high-temperature superconductors has been hotly debated for decades. Now a consensus is emerging that there may, in fact, be two networks of different stripes in which shape resonances play a key role in the superconductivity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified Fermi surface topologies that favour multi-condensate superconductivity in iron-based superconductors.
Figure 2: Schematic of the superstripes scenario in the CuO2 plane, which make up the active atomic layers in the cuprate heterostructures.

References

  1. http://www.ricmass.eu

  2. Müller, K. A. & Bussmann-Holder, A. (eds) Superconductivity in Complex Systems (Springer, 2005).

    Book  Google Scholar 

  3. Kuroki, K. et al. Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

  4. Innocenti, D. et al. Supercond. Sci. Tech. 24, 015012 (2011).

    Article  ADS  Google Scholar 

  5. Innocenti, D. et al. Phys. Rev. B 82, 184528 (2010).

    Article  ADS  Google Scholar 

  6. Perali, A., Innocenti, D., Valletta, A. & Bianconi, A. Supercond. Sci. Tech. 25, 124002 (2012).

    Article  ADS  Google Scholar 

  7. Yoshida, T. et al. Preprint at http://arxiv.org/abs/1301.4818 (2013).

  8. Borisenko, S. V. et al. Symmetry 4, 251–264 (2012).

    Article  Google Scholar 

  9. Kordyuk, A. A. J. Low Temp. Phys. 38, 888–899 (2012).

    Article  ADS  Google Scholar 

  10. Hücker, M. et al. Phys. Rev. B 87, 014501 (2013).

    Article  ADS  Google Scholar 

  11. Udby, L. et al. Preprint at http://arxiv.org/abs/1306.2155 (2013).

  12. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  13. Bianconi, A. et al. Phys. Rev. Lett. 76, 3412–3415 (1996).

    Article  ADS  Google Scholar 

  14. Bianconi, A. et al. J. Phys. Condens. Matt. 12, 10655–10666 (2000).

    Article  ADS  Google Scholar 

  15. Poccia, N. et al. Nature Mater. 10, 733–736 (2011).

    Article  ADS  Google Scholar 

  16. Poccia, N. et al. Proc. Natl Acad. Sci. USA 109, 15685–15690 (2012).

    Article  ADS  Google Scholar 

  17. Jarlborg, T. & Bianconi, A. Phys. Rev. B 87, 054514 (2013).

    Article  ADS  Google Scholar 

  18. Bianconi, A. Int. J. Mod. Phys. B 14, 3289–3297 (2000).

    Article  ADS  Google Scholar 

  19. Ricci . et al. Phys. Rev. B 84, 060511 (2010).

    Article  Google Scholar 

  20. Bianconi, G. Phys. Rev. E 85, 061113 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bianconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianconi, A. Shape resonances in superstripes. Nature Phys 9, 536–537 (2013). https://doi.org/10.1038/nphys2738

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing