Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate

This article has been updated


When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as the Kibble–Zurek mechanism. Originally introduced in cosmology, it applies to both classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose–Einstein condensates through the Kibble–Zurek mechanism. We measure the power-law dependence of defect number on the quench time, and show that lower atomic densities enhance defect formation. These results provide a promising test bed for the determination of critical exponents in Bose–Einstein condensates.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Solitons in an elongated BEC.
Figure 2: Soliton number versus quench time.
Figure 3: Quenched evaporation in an inhomogeneous trapped gases.
Figure 4: Soliton number decay.

Change history

  • 19 September 2013

    In the version of this Article originally published online, in Fig. 2b,c, the values of Nat for each data series were missing from the legend. This error has now been corrected in all versions of the Article.


  1. Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A 9, 1387 (1976).

    ADS  Article  Google Scholar 

  2. Kibble, T. Some implications of a cosmological phase transition. Phys. Rep. 67, 183–199 (1980).

    ADS  MathSciNet  Article  Google Scholar 

  3. Zurek, W. H. Cosmological experiments in superfluid liquid helium? Nature 317, 505–508 (1985).

    ADS  Article  Google Scholar 

  4. Zurek, W. Cosmological experiments in condensed matter systems. Phys. Rep. 276, 177–221 (1996).

    ADS  Article  Google Scholar 

  5. Del Campo, A., Kibble, T. W. B. & Zurek, W. H. Causality and non equilibrium second-order phase transitions in inhomogeneous systems. Preprint at (2013).

  6. Dziarmaga, J., Smerzi, A., Zurek, W. H. & Bishop, A. R. Dynamics of quantum phase transition in an array of Josephson junctions. Phys. Rev. Lett. 88, 167001 (2002).

    ADS  Article  Google Scholar 

  7. Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005).

    ADS  Article  Google Scholar 

  8. Bäuerle, C., Bunkov, Y. M., Fisher, S. N., Godfrin, H. & Pickett, G. R. Laboratory simulation of cosmic string formation in the early Universe using superfluid 3He. Nature 382, 332–334 (1996).

    ADS  Article  Google Scholar 

  9. Ruutu, V. M. H. et al. Vortex formation in neutron irradiated 3He as an analogue of cosmological defect formation. Nature 382, 334–336 (1996).

    ADS  Article  Google Scholar 

  10. Carmi, R. & Polturak, E. Search for spontaneous nucleation of magnetic flux during rapid cooling of YBa2Cu3O7−δ films through T c . Phys. Rev. B 60, 7595–7600 (1999).

    ADS  Article  Google Scholar 

  11. Carmi, R., Polturak, E. & Koren, G. Observation of spontaneous flux generation in a multi-Josephson-junction loop. Phys. Rev. Lett. 84, 4966–4969 (2000).

    ADS  Article  Google Scholar 

  12. Monaco, R., Mygind, J. & Rivers, R. J. Zurek–Kibble domain structures: The dynamics of spontaneous vortex formation in annular Josephson tunnel junctions. Phys. Rev. Lett. 89, 080603 (2002).

    ADS  Article  Google Scholar 

  13. Monaco, R., Mygind, J. & Rivers, R. J. Spontaneous fluxon formation in annular Josephson tunnel junctions. Phys. Rev. B 67, 104506 (2003).

    ADS  Article  Google Scholar 

  14. Monaco, R., Mygind, J., Rivers, R. J. & Koshelets, V. P. Spontaneous fluxoid formation in superconducting loops. Phys. Rev. B 80, 180501 (2009).

    ADS  Article  Google Scholar 

  15. Pyka, K. et al. Symmetry breaking and topological defect formation in ion coulomb crystals. Nature Commun. 4, 2291 (2012).

    ADS  Article  Google Scholar 

  16. Ulm, S. et al. Observation of the Kibble–Zurek scaling law for defect formation in ion crystals. Nature Commun. 4, 2290 (2013).

    ADS  Article  Google Scholar 

  17. Ejtemaee, S. & Haljan, P. C. Spontaneous nucleation and dynamics of kink defects in zigzag arrays of trapped ions. Phys. Rev. A 87, 051401 (2013).

    ADS  Article  Google Scholar 

  18. Zurek, W. H. Causality in condensates: Gray solitons as relics of BEC formation. Phys. Rev. Lett. 102, 105702 (2009).

    ADS  Article  Google Scholar 

  19. Damski, B. & Zurek, W. H. Soliton creation during a Bose–Einstein condensation. Phys. Rev. Lett. 104, 160404 (2010).

    ADS  Article  Google Scholar 

  20. Del Campo, A., Retzker, A. & Plenio, M. B. The inhomogeneous Kibble–Zurek mechanism: Vortex nucleation during Bose–Einstein condensation. J. Phys. 13, 083022 (2011).

    Google Scholar 

  21. Witkowska, E., Deuar, P., Gajda, M. & Rzą zewski, K. Solitons as the early stage of quasicondensate formation during evaporative cooling. Phys. Rev. Lett. 106, 135301 (2011).

    ADS  Article  Google Scholar 

  22. Sabbatini, J., Zurek, W. H. & Davis, M. J. Phase separation and pattern formation in a binary Bose–Einstein condensate. Phys. Rev. Lett. 107, 230402 (2011).

    ADS  Article  Google Scholar 

  23. Weiler, C. N. et al. Spontaneous vortices in the formation of Bose–Einstein condensates. Nature 455, 948–952 (2008).

    ADS  Article  Google Scholar 

  24. Chen, D., White, M., Borries, C. & DeMarco, B. Quantum quench of an atomic Mott insulator. Phys. Rev. Lett. 106, 235304 (2011).

    ADS  Article  Google Scholar 

  25. Dziarmaga, J., Tylutki, M. & Zurek, W. H. Quench from Mott insulator to superfluid. Phys. Rev. B 86, 144521 (2012).

    ADS  Article  Google Scholar 

  26. Del Campo, A., De Chiara, G., Morigi, G., Plenio, M. B. & Retzker, A. Structural defects in ion chains by quenching the external potential: The inhomogeneous Kibble–Zurek mechanism. Phys. Rev. Lett. 105, 075701 (2010).

    ADS  Article  Google Scholar 

  27. Donner, T. et al. Critical behavior of a trapped interacting Bose gas. Science 315, 1556–1558 (2007).

    ADS  Article  Google Scholar 

  28. Burger, S. et al. Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999).

    ADS  Article  Google Scholar 

  29. Denschlag, J. et al. Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97–101 (2000).

    ADS  Article  Google Scholar 

  30. Becker, C. et al. Oscillations and interactions of dark and dark-bright solitons in Bose–Einstein condensates. Nature Phys. 4, 496–501 (2008).

    ADS  Article  Google Scholar 

  31. Chang, J. J., Engels, P. & Hoefer, M. A. Formation of dispersive shock waves by merging and splitting Bose–Einstein condensates. Phys. Rev. Lett. 101, 170404 (2008).

    ADS  Article  Google Scholar 

  32. Shomroni, I., Lahoud, E., Levy, S. & Steinhauer, J. Evidence for an oscillating soliton/vortex ring by density engineering of a Bose–Einstein condensate. Nature Phys. 5, 193–197 (2009).

    ADS  Article  Google Scholar 

  33. Anderson, B. P. et al. Watching dark solitons decay into vortex rings in a Bose–Einstein condensate. Phys. Rev. Lett. 86, 2926–2929 (2001).

    ADS  Article  Google Scholar 

  34. Carr, L. D. & Brand, J. in Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment (eds Kevrekidis, P. G., Frantzeskakis, D. J. & Carretero-Gonzalez, R.) Ch. 7 (Springer, 2009).

    Google Scholar 

  35. Dalfovo, F. & Modugno, M. Free expansion of Bose–Einstein condensates with quantized vortices. Phys. Rev. A 61, 023605 (2000).

    ADS  Article  Google Scholar 

  36. Ketterle, W. & van Druten, N. in Advances in Atomic, Molecular, and Optical Physics 37 (eds Bederson, B. & Walther, H.) 181–236 (1996).

    Google Scholar 

  37. Hu, H., Taylor, E., Liu, X-J., Stringari, S. & Griffin, A. Second sound and the density response function in uniform superfluid atomic gases. New J. Phys. 12, 043040 (2010).

    ADS  Article  Google Scholar 

  38. Weir, D. J., Monaco, R., Koshelets, V. P., Mygind, J. & Rivers, R. J. Gaussianity revisited: Exploring the Kibble–Zurek mechanism with superconducting rings J. Phys. Condens. Matter Preprint at (2013).

  39. Su, S-W., Gou, S-C., Bradley, A., Fialko, O. & Brand, J. Kibble–Zurek scaling and its breakdown for spontaneous generation of Josephson vortices in Bose–Einstein condensates. Phys. Rev. Lett. 110, 215302 (2013).

    ADS  Article  Google Scholar 

  40. Yefsah, T. et al. Heavy solitons in a fermionic superfluid. Nature 499, 426–430 (2013).

    ADS  Article  Google Scholar 

  41. Lamporesi, G., Donadello, S., Serafini, S. & Ferrari, G. Compact high-flux source of cold sodium atoms. Rev. Sci. Instrum. 84, 063102 (2013).

    ADS  Article  Google Scholar 

  42. Pritchard, D. E. Cooling neutral atoms in a magnetic trap for precision spectroscopy. Phys. Rev. Lett. 51, 1336–1339 (1983).

    ADS  Article  Google Scholar 

Download references


We are indebted to L. P. Pitaevskii, I. Carusotto and A. Recati for fruitful discussions. This work is supported by Provincia Autonoma di Trento.

Author information

Authors and Affiliations



G.L., S.D., S.S. and G.F. built the experimental set-up; G.L., S.D. and G.F. performed data acquisition; G.L. and G.F. analysed the data; all authors contributed to the discussion of the results and G.L., S.D., F.D. and G.F. participated in manuscript preparation.

Corresponding author

Correspondence to Gabriele Ferrari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lamporesi, G., Donadello, S., Serafini, S. et al. Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate. Nature Phys 9, 656–660 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing