Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy

Abstract

External control of the conductivity of correlated oxides is one of the most promising schemes for realizing energy-efficient electronic devices. Vanadium dioxide (VO2), an archetypal correlated oxide compound, undergoes a temperature-driven metal–insulator transition near room temperature with a concomitant change in crystal symmetry. Here, we show that the metal–insulator transition temperature of thin VO2(001) films can be changed continuously from 285 to 345 K by varying the thickness of the RuO2 buffer layer (resulting in different epitaxial strains). Using strain-, polarization- and temperature-dependent X-ray absorption spectroscopy, in combination with X-ray diffraction and electronic transport measurements, we demonstrate that the transition temperature and the structural distortion across the transition depend on the orbital occupancy in the metallic state. Our findings open up the possibility of controlling the conductivity in atomically thin VO2 layers by manipulating the orbital occupancy by, for example, heterostructural engineering.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overview and strain-dependent MIT in VO2.
Figure 2: Polarization-dependent XAS.
Figure 3: Strain-dependent orbital-occupation changes.
Figure 4: Orbital–lattice correlation.

References

  1. 1

    Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    ADS  Article  Google Scholar 

  2. 2

    Bednorz, J. G. & Müller, K. A. Possible high T c superconductivity in the Ba–La–Cu–O system. Zeit. Für. Phys. 64, 189–193 (1986).

    Article  Google Scholar 

  3. 3

    Torrance, J. B., Lacorre, P., Asavaroengchai, C. & Metzger, R. M. Why are some oxides metallic, while most are insulating? Physica C 182, 351–364 (1991).

    ADS  Article  Google Scholar 

  4. 4

    Bocquet, A. E., Saitoh, T., Mizokawa, T. & Fujimori, A. Systematics in the electronic structure of 3d transition-metal compounds. Solid State Commun. 83, 11–15 (1992).

    ADS  Article  Google Scholar 

  5. 5

    Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).

    ADS  Article  Google Scholar 

  6. 6

    Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).

    ADS  Article  Google Scholar 

  7. 7

    Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977–980 (2009).

    ADS  Article  Google Scholar 

  8. 8

    Morin, F. J. Oxides which show a metal-to-insulator transition at the Néel temperature. Phys. Rev. Lett. 3, 34–36 (1959).

    ADS  Article  Google Scholar 

  9. 9

    Abbate, M. et al. Soft-x-ray-absorption studies of the electronic-structure changes through the VO2 phase transition. Phys. Rev. B 43, 7263–7266 (1991).

    ADS  Article  Google Scholar 

  10. 10

    Biermann, S., Poteryaev, A., Lichtenstein, A. I. & Georges, A. Dynamical singlets and correlation-assisted Peierls transition in VO2 . Phys. Rev. Lett. 94, 026404 (2005).

    ADS  Article  Google Scholar 

  11. 11

    Haverkort, M. W. et al. Orbital-assisted metal-insulator transition in VO2 . Phys. Rev. Lett. 95, 196404 (2005).

    ADS  Article  Google Scholar 

  12. 12

    McWhan, D. B., Marezio, M., Remeika, J. P. & Dernier, P. D. X-ray diffraction study of metallic VO2 . Phys. Rev. B 10, 490–495 (1974).

    ADS  Article  Google Scholar 

  13. 13

    Eyert, V. The metal-insulator transitions of VO2: A band theoretical approach. Ann. Phys. 11, 650–704 (2002).

    Article  Google Scholar 

  14. 14

    Goodenough, J. B. The two components of the crystallographic transition in VO2 . J. Solid State. Chem. 3, 490–500 (1971).

    ADS  Article  Google Scholar 

  15. 15

    Goodenough, J. B. Direct cation–cation interactions in several oxides. Phys. Rev. 117, 1442–1451 (1960).

    ADS  Article  Google Scholar 

  16. 16

    Koethe, T. C. et al. Transfer of spectral weight and symmetry across the metal–insulator transition in VO2 . Phys. Rev. Lett. 97, 116402 (2006).

    ADS  Article  Google Scholar 

  17. 17

    Tanaka, A. On the metal–insulator transitions in VO2 and Ti2O3 from a unified viewpoint. J. Phys. Soc. Jpn 73, 152–162 (2004).

    ADS  Article  Google Scholar 

  18. 18

    Butler, S. R. & Gillson, J. L. Crystal growth, electrical resistivity and lattice parameters of RuO2 and IrO2 . Mater. Res. Bull. 6, 81–89 (1971).

    Article  Google Scholar 

  19. 19

    Grant, F. A. Properties of rutile (titanium dioxide). Rev. Mod. Phys. 31, 646–674 (1959).

    ADS  Article  Google Scholar 

  20. 20

    Muraoka, Y., Ueda, Y. & Hiroi, Z. Large modification of the metal–insulator transition temperature in strained VO2 films grown on TiO2 substrates. J. Phys. Chem. Solids 63, 965–967 (2002).

    ADS  Article  Google Scholar 

  21. 21

    Pouget, J. P., Launois, H., D’Haenens, J. P., Merenda, P. & Rice, T. M. Electron localization induced by uniaxial stress in pure VO2 . Phys. Rev. Lett. 35, 873–875 (1975).

    ADS  Article  Google Scholar 

  22. 22

    Ferrari, C., Buffagni, E. & Rossi, F. in Characterization of Semiconductor Heterostructures and Nanostructures (eds Agostini, G. & Lamberti, C.) Ch. 3 (Elsevier, 2013).

    Google Scholar 

  23. 23

    De Groot, F. M. F. X-ray absorption and dichroism of transition metals and their compounds. J. Electron Spectrosc. Relat. Phenom. 67, 529–622 (1994).

    Article  Google Scholar 

  24. 24

    De Groot, F. M. F. et al. Oxygen 1s X-ray-absorption edges of transition-metal oxides. Phys. Rev. B 40, 5715–5723 (1989).

    ADS  Article  Google Scholar 

  25. 25

    De Groot, F. High-resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 101, 1779–1808 (2001).

    Article  Google Scholar 

  26. 26

    Park, J. H. et al. Spin and orbital occupation and phase transitions in V2O3 . Phys. Rev. B 61, 11506–11509 (2000).

    ADS  Article  Google Scholar 

  27. 27

    Sawatzky, G. A. & Post, D. X-ray photoelectron and Auger spectroscopy study of some vanadium oxides. Phys. Rev. B 20, 1546–1555 (1979).

    ADS  Article  Google Scholar 

  28. 28

    Zaanen, J., Sawatzky, G. A. & Allen, J. W. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    ADS  Article  Google Scholar 

  29. 29

    Khomskii, D. I. & Mizokawa, T. Orbitally induced Peierls state in spinels. Phys. Rev. Lett. 94, 156402 (2005).

    ADS  Article  Google Scholar 

  30. 30

    Senn, M. S., Wright, J. P. & Attfield, J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481, 173–176 (2012).

    ADS  Article  Google Scholar 

  31. 31

    Chakhalian, J. et al. Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007).

    ADS  Article  Google Scholar 

  32. 32

    Pardo, V. & Pickett, W. E. Half-metallic semi-Dirac point generated by quantum confinement in TiO2/VO2 nanostructures. Phys. Rev. Lett. 102, 166803 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Yang, X. Jiang and A. Pushp for useful discussions and J. Jeong for help with VO2 deposition. Research at Stanford is supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC02-76SF00515. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02-05CH11231. Part of this research was supported by the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences.

Author information

Affiliations

Authors

Contributions

N.B.A., M.G.S. and S.S.P.P. designed the study. N.B.A. deposited VO2 films and L.G. deposited RuO2 films. X-ray diffraction and electrical transport measurements were performed and analysed by N.B.A., M.D. and M.C. with help from L.G. A.X.G., N.B.A., A.H.R., R.K. and H.O. carried out and analysed the X-ray absorption measurements, with assistance from C.A.J. and E.A. and under the supervision of H.A.D. M.G.S. helped with X-ray absorption data analysis and along with K.P.R. provided thin-film deposition expertise. N.B.A. and S.S.P.P. wrote the paper with contributions from A.X.G., H.A.D. and M.G.S. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Nagaphani B. Aetukuri or Stuart S. P. Parkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2553 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aetukuri, N., Gray, A., Drouard, M. et al. Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy. Nature Phys 9, 661–666 (2013). https://doi.org/10.1038/nphys2733

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing