Letter | Published:

Distribution of entropy production in a single-electron box

Nature Physics volume 9, pages 644648 (2013) | Download Citation

Abstract

Recently, the fundamental laws of thermodynamics have been reconsidered for small systems. The discovery of the fluctuation relations1,2,3,4,5 has spurred theoretical6,7,8,9,10,11,12,13 and experimental14,15,16,17,18,19,20,21,22,23,24,25 studies. The concept of entropy production has been extended to the microscopic level by considering stochastic trajectories of a system coupled to a heat bath. However, this has not been studied experimentally if there are multiple thermal baths present. Here, we measure, with high precision, the distributions of microscopic entropy production in a single-electron box consisting of two islands with a tunnel junction. The islands are coupled to separate heat baths at different temperatures, maintaining a steady thermal non-equilibrium. We demonstrate that stochastic entropy production8,10,11,12,17,20,25,26 from trajectories of electronic transitions is related to thermodynamic entropy production from dissipated heat in the respective thermal baths. We verify experimentally that the fluctuation relations for both definitions are satisfied. Our results reveal the subtlety of irreversible entropy production in non-equilibrium.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993).

  2. 2.

    & Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995).

  3. 3.

    Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997).

  4. 4.

    Fluctuation theorem for stochastic dynamics. J. Phys. A. 31, 3719–3729 (1998).

  5. 5.

    Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999).

  6. 6.

    Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98, 77–102 (2000).

  7. 7.

    & Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466 (2001).

  8. 8.

    Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005).

  9. 9.

    & Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 104, 090602 (2010).

  10. 10.

    , & Dissipation: The phase-space perspective. Phys. Rev. Lett. 98, 080602 (2007).

  11. 11.

    , & Lower bounds on dissipation upon coarse graining. Phys. Rev. E 78, 011107 (2008).

  12. 12.

    Stochastic thermodynamics under coarse graining. Phys. Rev. E 85, 041125 (2012).

  13. 13.

    Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

  14. 14.

    , , , & Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002).

  15. 15.

    , , , & Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002).

  16. 16.

    et al. Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proc. Natl Acad. Sci. USA 101, 15038–15041 (2004).

  17. 17.

    , , , & Experimental test of the fluctuation theorem for a driven two-level system with time-dependent rates. Phys. Rev. Lett. 94, 180602 (2005).

  18. 18.

    et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).

  19. 19.

    , , , & Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Phys. Rev. Lett. 96, 070603 (2006).

  20. 20.

    , , , & Measurement of stochastic entropy production. Phys. Rev. Lett. 97, 050602 (2006).

  21. 21.

    , , & Distribution of entropy production for a colloidal particle in a nonequilibrium steady state. Europhys. Lett. 79, 30002 (2007).

  22. 22.

    et al. Nonequilibrium fluctuation relations in a quantum coherent conductor. Phys. Rev. Lett. 104, 080602 (2010).

  23. 23.

    , , , & Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nature Phys. 6, 988–992 (2010).

  24. 24.

    et al. Test of the Jarzynski and Crooks fluctuation relations in an electronic system. Phys. Rev. Lett. 109, 180601 (2012).

  25. 25.

    et al. Role of hidden slow degrees of freedom in the fluctuation theorem. Phys. Rev. Lett. 108, 220601 (2012).

  26. 26.

    & Fluctuation theorem for hidden entropy production. Preprint at  (2012).

  27. 27.

    & Statistics of the dissipated energy in driven single-electron transitions. Europhys. Lett. 96, 67004 (2011).

  28. 28.

    , & Dissipated work and fluctuation relations for non-equilibrium single-electron transitions. J. Stat. Mech.P02033 (2013).

  29. 29.

    & Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel-junctions. J. Low Temp. Phys. 62, 345–373 (1986).

  30. 30.

    & Work, free energy and dissipation in voltage driven single-electron transitions. J. Low Temp. Phys. 169, 70–76 (2012).

  31. 31.

    et al. Single quasiparticle excitation dynamics on a superconducting island. Preprint at  (2013).

Download references

Acknowledgements

This work has been supported in part by the Academy of Finland though its LTQ (project no. 250280) and COMP (project no. 251748) CoE grants, the European Union Seventh Framework Programme INFERNOS (FP7/2007–2013) under grant agreement no. 308850, the Research Foundation of Helsinki University of Technology, and the Väisälä Foundation. We acknowledge Micronova Nanofabrication Centre of Aalto University for providing the processing facilities and technical support. We thank D. Averin, S. Gasparinetti, F. Hekking, K. Likharev, V. Maisi and M. Meschke for useful discussions.

Author information

Affiliations

  1. Low Temperature Laboratory (OVLL), Aalto University, POB 13500, FI-00076 AALTO, Finland

    • J. V. Koski
    • , O-P. Saira
    • , Y. Yoon
    • , P. Solinas
    • , M. Möttönen
    •  & J. P. Pekola
  2. Department of Basic Science, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan

    • T. Sagawa
  3. Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands

    • O-P. Saira
  4. COMP Centre of Excellence, Department of Applied Physics, Aalto University School of Science, PO Box 11000, FI-00076 Aalto, Espoo, Finland

    • A. Kutvonen
    • , P. Solinas
    •  & T. Ala-Nissila
  5. QCD Labs, COMP Centre of Excellence, Department of Applied Physics, Aalto University School of Science, PO Box 13500, FI-00076 Aalto, Espoo, Finland

    • M. Möttönen
  6. Department of Physics, Brown University, Providence, Rhode Island 02912-1843, USA

    • T. Ala-Nissila

Authors

  1. Search for J. V. Koski in:

  2. Search for T. Sagawa in:

  3. Search for O-P. Saira in:

  4. Search for Y. Yoon in:

  5. Search for A. Kutvonen in:

  6. Search for P. Solinas in:

  7. Search for M. Möttönen in:

  8. Search for T. Ala-Nissila in:

  9. Search for J. P. Pekola in:

Contributions

J.V.K., O-P.S., Y.Y. and J.P.P. conceived and designed the experiments; J.V.K., O-P.S. and Y.Y. performed the experiments; J.V.K. and M.M. analysed the data. All authors contributed with materials/analysis tools; J.V.K., T.S., M.M., T.A-N. and J.P.P. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to J. V. Koski.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2711

Further reading