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Distribution of entropy production in a
single-electron box

J. V. Koski1*, T. Sagawa2, O-P. Saira1,3, Y. Yoon1, A. Kutvonen4, P. Solinas1,4, M. Möttönen1,5,
T. Ala-Nissila4,6 and J. P. Pekola1

Recently, the fundamental laws of thermodynamics have
been reconsidered for small systems. The discovery of
the fluctuation relations1–5 has spurred theoretical6–13 and
experimental14–25 studies. The concept of entropy production
has been extended to the microscopic level by considering
stochastic trajectories of a system coupled to a heat bath.
However, this has not been studied experimentally if there
are multiple thermal baths present. Here, we measure,
with high precision, the distributions of microscopic entropy
production in a single-electron box consisting of two islands
with a tunnel junction. The islands are coupled to separate
heat baths at different temperatures, maintaining a steady
thermal non-equilibrium. We demonstrate that stochastic
entropy production8,10–12,17,20,25,26 from trajectories of electronic
transitions is related to thermodynamic entropy production
from dissipated heat in the respective thermal baths. We
verify experimentally that the fluctuation relations for both
definitions are satisfied. Our results reveal the subtlety of
irreversible entropy production in non-equilibrium.

The second law of thermodynamics states that, on average, total
entropy production is either zero or positive, the latter of which is
a hallmark of irreversible processes. However, the so-called integral
fluctuation theorem (IFT) reveals that negative entropy production
is possible for an individual stochastic trajectory of the system. In
systems that are not coupled to a thermal bath17,20, the stochastic
entropy production and work seem to have no obvious connection
to their thermodynamic counterparts. The situation is further
complicated by the fact that stochastic trajectories actually depend
on the scale of observation. If one only accesses mesoscopic degrees
of freedom, one observes coarse-grained trajectories of mesoscopic
states. The corresponding entropy production then differs from
that without coarse-graining. Recent experiments25 with a driven
colloidal particle in a bath of fluid have shown that coarse-graining
of the slow background degrees of freedom may actually lead to a
modification of the fluctuation relations. An important question
that remains is what happens to a small system coupled to more
than just one heat bath when the temperatures of the baths are
not equal. Such a system goes naturally to a non-equilibrium
state, but the dissipated heat of the baths can still be physically
defined. To this end, we consider here the case of a two-level system
coupled to two such thermal baths. We measure the distributions
of entropy production at different levels of description, and clarify
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Figure 1 |Measurement set-up. a, Sketch of the measured system together
with a scanning electron micrograph of a typical sample. The colours on the
micrograph indicate the correspondingly coloured circuit elements in the
sketch. b, Example trace of the measured detector signal under a sinusoidal
protocol for the drive Vg, plotted in green. This trace covers three
realizations of the forward protocol (Vg from−0.1 to 1 mV), and three
realizations of the backward protocol (Vg from 1 to−0.1 mV). The SET
current Idet, plotted in black, indicates the charge state of the box. The
output of the threshold detection is shown in solid blue, with the threshold
level as indicated by the dashed red line.

the connection between the stochastic entropy production and
that of the heat baths.

A single-electron box (SEB) at low temperatures is an excellent
test bench for thermodynamics in small systems24,27,28. The SEB
employed here is shown in Fig. 1a. The electrons in the normal-
metal copper island (N) can tunnel to the superconducting
Al island (S) through the aluminium oxide insulator (I). We
denote by n the integer net number of electrons tunnelled
from S to N relative to charge neutrality. As we can monitor
the charge state n with a nearby single-electron transistor
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(SET) shown in Fig. 1a, we take our classical system degree of
freedom to be n.

The device in Fig. 1a can be represented with a classical electric
circuit, in which the energy stored in the capacitors and the voltage
sources is given by27,29,30

H (ng,n)= EC(n−ng)2−e2n2g/(2Cg) (1)

where EC is the characteristic charging energy, Cg is the gate
capacitance, ng = CgVg/e is the gate charge in units of the
elementary charge e, andVg is the gate voltage that drives the system
externally. Equation (1) gives the internal energy of the system. In
an instantaneous single-electron tunnelling event from n = k to
n= k+ 1, the drive parameters stay constant and hence the work
done to the system vanishes. Thus the first law of thermodynamics
states that the generated heat is given by

Qk =H (ng,k)−H (ng,k+1)= EC[2(ng−k)−1] (2)

It has been recently demonstrated that when the SEB is in
thermal equilibrium and the transition rates obey the detailed
balance condition, the Jarzynski Equality 〈e−βW 〉 = e−β1F , relating
the work done in the systemW at inverse temperature β = 1/kB T
to its free energy change1F , can be verified both theoretically27,28,30
and experimentally24 to a high degree of accuracy. In the present
work, however, the two environments consisting of the excitations
in the normal metal and the superconductor are at different
temperatures TN= 1/(kBβN) and TS = 1/(kBβS), respectively, and
hence the Jarzynski Equality cannot be applied. Nevertheless, we
expect that our system obeys the IFT8,

〈e−1stot〉= 1 (3)

for the total entropy production1stot=1s+1sm given in terms of
the increase of the system entropy 1s= ln{P[n(tf )]/P[n(0)]} and
the medium entropy production 1sm. Here, P[n(t )] is the directly
measurable probability of the system to be in state n at time instant
t given the initial condition and the drive ng(t ).

As each heat bath is described by a thermal distribution, the total
thermodynamic entropy production in themedium is given by

1sthm=βNQN+βSQS

where QN and QS are the heat dissipated along the trajectory in
the normal metal and in the superconductor, respectively. We
can measure the total dissipated heat Q = QN +QS directly by
monitoring n(t ) with the SET and using equation (2). The only
essential assumption here is that the tunnelling is elastic because
the parameters of the Hamiltonian equation (1) can be measured
independently. Heat is dissipated on N and S whenever n changes.
For instance, in a transition n:k→ k+1 an electron tunnels from
S to N . As illustrated in Fig. 2a, −QS equals the energy carried by
the electron, whereasQN=−QS+Q equals the sum of the electron
energy and the energy it gains according to equation (2). We can
further obtain the conditional probability of QS on Q by some
additional assumptions (for technical details, see Supplementary
Information) and hence the probability distribution of1sthm.

We can take a different approach by eliminating the dependence
on QS in entropy production by averaging. Consider a single
transition n:k→ k±1. For this, we define a coarse-grained entropy
production in the medium1sccm as

e−1sccm(Q)=〈e−1sthm(QS,Q)〉Q (4)

where 〈···〉Q denotes an average over the heat dissipated in QS for
a fixed Q. It is shown in the Supplementary Information that this
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Figure 2 | Evaluation of entropy production. a, Energy diagram of a
transition 0→ 1, where an electron tunnels from S to N. The event removes
an energy−QS from S with respect to its Fermi level and similarly adds QN

to N.1sth
m depends on both QN and QS, whereas the total dissipated heat Q

is always determined by the control parameter ng. The energy gap in the
superconductor density of states is not shown for simplicity. b, The
tunnelling rates 00→1 (triangles pointing up) and 01→0 (triangles pointing
down) for measurements 1–3 (dark blue, light blue and green symbols) and
8–10 (dark red, light red and pink symbols) with their corresponding fits
(solid lines; for parameters see Table 1). c, Entropy produced by the
transition 0→ 1 at 153 mK as a function of ng at the time instant of the
transition. Probability density of1sth

m along the y axis is shown in red,
〈1sth

m〉Q is shown in brown, the1sst
m extracted from b is shown in blue, and

βNQ is shown in green.

definition of entropy coincides with stochastic entropy production
in the medium8,13, which is defined as

1sstm=
∑
j

ln
[
0n−→n+(tj)
0n+→n−(tj)

]
=

∑
j

1sccm(Qj)

where the system is taken to make transitions at time instants tj
from the state n− to the state n+, and 0n−→n+(tj) and 0n+→n−(tj)
are the corresponding forward and backward transition rates, and
Qj is the total dissipated heat at that time instant. This derivation
provides a physical interpretation for 1sstm, and by further noting
that equation (4) implies 〈1sthm〉Q≥1sccm(Q), wemay conclude that

〈1sthm〉≥ 〈1sstm〉

Note that, by introducing transition rates, we have implicitly
assumed that the system is Markovian, a fact that can be
experimentally verified in our set-up.
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Table 1 |Measurement parameters and obtained averages for work and entropy production.

Meas. f (Hz) TN (mK) n0 TS,0 (mK) TS,1 (mK) 〈e−βNW̄〉 〈e−1sst
tot 〉 〈e−1sth

tot 〉

1 20 130 0.526 174 177 93 1.085 1.063
2 40 130 0.516 174 177 129 1.064 1.053
3 80 130 0.507 176 178 180 1.074 1.083
4 20 142 0.513 179 181 20 1.064 1.030
5 40 142 0.509 179 181 30 1.054 1.047
6 80 142 0.505 180 181 45 1.096 1.100
7 120 141 0.504 181 182 68 1.241 1.324
8 40 153 0.502 184 184 11 1.095 1.058
9 80 153 0.503 184 185 15 1.140 1.139
10 120 153 0.502 185 186 20 1.301 1.370

TS,0/1 is the superconductor S temperature matching the state n=0/1, and W̄=W−1F.

By extracting the entropy production from each detector
trace, we can experimentally obtain the probability distributions
P�(1sthtot) and P�(1ssttot) of1sthtot=1s+1sthm and1ssttot=1s+1sstm,
respectively, and hence access the IFT of equation (3), which should
be satisfied by all the distributions. Here, P→ is the distribution
for a forward driving protocol ng ,→(t ) and P← corresponds to
the backward protocol ng ,←(t ) = ng ,→(tf − t ). In addition, we
expect our system to satisfy the so-called detailed fluctuation
relations5,13 (DFR)

P�(1ssttot)/P�(−1ssttot) = e1ssttot

P�(1sthtot)/P�(−1sthtot) = e1sthtot (5)

In our experiments, we drive the system with the gate charge
ng(t ) = n0 − A cos(πft ), where n0 ≈ A ≈ 0.5. Figure 1b shows
the applied drive and an example trace of the detector current.
Clearly, two discrete current levels corresponding to the charge
states n = 0 and n = 1 are observable. Owing to the low bath
temperatures, 130–160mK, the relatively high charging energy
EC≈ 162 µ eV= 1.88K×kB, and low driving frequencies f ≤ 120
Hz, the system essentially always finds theminimum-energy state at
the extrema of the drive. Thuswe partition the continuousmeasure-
ment into legs of forward and backward protocols, for which the
charge state and gate charge change from 0 to 1 and 1 to 0, respec-
tively. Conversion of the current trace from such a leg using thresh-
old detection yields a realization for a system trajectory n(t ), an
ensemble of which is used to obtain the desired distributions.More-
over, the system entropy change1s in equation (3) vanishes, andwe
thus need only to obtain1sm to assess the fluctuation relations.

Figure 2c shows the estimated 1sthm conditional probability
distribution and 1sstm as functions of the drive ng. To obtain 1sstm,
the tunnelling rates 0i→j(ng), shown in Fig. 2b, are measured and
fitted by a standard sequential tunnellingmodel, see Supplementary
Information for details. For ng≈0.4–0.6, the tunnelling probability
is primarily determined by the thermal excitations of the overheated
superconductor and not by ng. This leads to a nearly vanishing1sstm,
whereas the average of 1sthm remains positive as a sign of heat flow
from hot S to cold N.

Table 1 presents a collection of measurement parameters as
well as exponential averages for entropy production. Figures 3
and 4 show the experimentally obtained distributions for work and
entropy production together with respective theoretical predictions
for various TN and f . As expected, the work distributions in Fig. 3a
do not satisfy Jarzynski Equality. For comparison, the case TS=TN,
where Jarzynski Equality is valid, is shown by the dashed lines. The
difference between TN and TS decreases with increasing TN, and
hence the difference between data and the dashed lines decreases
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Figure 3 |Distributions of entropy production at different temperatures.
a, βN(W−1F) distributions for a 40 Hz forward protocol at different bath
temperatures. The symbols show measured values (key in b applies to all
panels), solid lines are numerical expectations (all panels), and dashed
lines demonstrate what the distribution would be for TS= TN, such that
Jarzynski Equality would be satisfied. b, Corresponding1sst

tot distributions.
c,1sth

tot distributions for single jump trajectories.

as well. Conversely, all the entropy distributions in Figs 3b,c and 4,
obtained from the same trajectories as thework distributions, satisfy
the IFT within the experimental error. As it is relatively common
that the transition 0→ 1 or 1→ 0 occurs when ng ≈ 0.4–0.6, one
observes peaks in the 1ssttot distributions (Figs 3b and 4a,b) in the
vicinity of zero, whereas the 1sthtot distributions (Figs 3c and 4c)
exhibit a tail for positive1sthtot, as indicated by Fig. 2c.

Figure 5a,b show the DFR for 1ssttot and 1sthtot, respectively. The
1ssttot distributions for forward and backward protocls, shown in
Fig. 4b, are overlapping, apart from the positions of the peaks near
vanishing 1ssttot. The offset of the peaks is explained by different
superconductor temperatures (Table 1) for different tunnelling
directions, leading to 00→1(ng = 0.5) < 01→0(ng = 0.5). For the
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n:0→ 1 event, this corresponds to negative entropy production,
whereas positive production is observed for n:1→ 0. Different
temperatures for different tunnelling directions can be justified
by the difference in the observed tunnelling rates in Fig. 2b.

The SET current is higher for n = 1 than for n = 0 (Fig. 1c),
inducing a higher excess heating power for the superconductor at
n= 1. However, even with these offsets in the 1ssttot distributions,
they do obey the DFR.

Our measured distributions satisfy the IFT and DFR, verifying
the fluctuation relations in thermal non-equilibrium. The fluctua-
tion relations can be used to determine thermodynamic quantities
such as free energy. Moreover, these relations apply even beyond
the linear response regime, whereas the conventional fluctuation-
dissipation theorem, widely used for instance in condensed matter
physics, is a result of linear response theory with limited applicabil-
ity to non-equilibrium processes.

Methods
The sample fabrication methods (see Supplementary Information for details) are
similar to those in ref. 24, but the design is different such that the S side of the
junction does not overlap with the normal conductor to intentionally weaken
the relaxation of energy in S (ref. 31). Moreover, the main results in ref. 24 were
extracted from measurements at a temperature of 220mK, whereas the present
measurements are conducted at 140mK. Lower temperature further weakens the
relaxation significantly31, leading to a steady elevated temperature in S.

The tunnelling rates are solved by comparing the measured data to the
outcome from the master equation, see Supplementary Information for details.
The rates from the standard sequential tunnelling model are in agreement
with the experimentally obtained data. Utilizing the model as a fit yields the
charging energy, the tunnelling resistance of the junction RT ≈ 1.7M�, and the
excitation gap of the superconductor ∆≈ 224 µ eV. TN is assumed to be the
temperature of the cryostat, whereas TS is obtained for each measurement from
the fit as listed in Table 1.
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