Article | Published:

Demonstration of genuine multipartite entanglement with device-independent witnesses

Nature Physics volume 9, pages 559562 (2013) | Download Citation

Abstract

Entanglement in a quantum system can be demonstrated experimentally by performing the measurements prescribed by an appropriate entanglement witness. However, the unavoidable mismatch between the implementation of measurements in practical devices and their precise theoretical modelling generally results in the undesired possibility of false-positive entanglement detection. Such scenarios can be avoided by using the recently developed device-independent entanglement witnesses (DIEWs) for genuine multipartite entanglement. Similarly to Bell inequalities, the only assumption of DIEWs is that consistent measurements are performed locally on each subsystem. No precise description of the measurement devices is required. Here we report an experimental test of DIEWs on up to six entangled 40Ca+ ions. We also demonstrate genuine multipartite quantum nonlocality between up to six parties with the detection loophole closed.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  2. 2.

    Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

  3. 3.

    , , & Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

  4. 4.

    , , , & Measurement-based quantum computation. Nature Phys. 5, 19 (2009).

  5. 5.

    et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010).

  6. 6.

    et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

  7. 7.

    , & Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

  8. 8.

    & Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

  9. 9.

    & Entanglement detection. Phys. Rep. 474, 1–75 (2009).

  10. 10.

    et al. Observation of eight-photon entanglement. Nature Photon. 6, 225–228 (2012).

  11. 11.

    et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nature Phys. 6, 331–335 (2010).

  12. 12.

    et al. 14-qubit entanglement: Creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

  13. 13.

    & Fake violations of the quantum Bell-parameter bound. Phys. Rev. A 83, 032119 (2011).

  14. 14.

    , , , & Imperfect measurements settings: Implications on quantum state tomography and entanglement witnesses. Phys. Rev. A 86, 062325 (2012).

  15. 15.

    , & Qubit quantum state tomography. Lect. Notes Phys. 649, 113–145 (2004).

  16. 16.

    Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299–332 (2009).

  17. 17.

    & Quantum tomographic reconstruction with error bars: A Kalman filter approach. New J. Phys. 11, 023028 (2009).

  18. 18.

    , & From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006).

  19. 19.

    , , & Device-independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105, 230501 (2010).

  20. 20.

    et al. Experimental estimation of the dimension of classical and quantum systems. Nature Phys. 8, 588–591 (2012).

  21. 21.

    , , & Experimental device- independent tests of classical and quantum dimensions. Nature Phys. 8, 592–595 (2012).

  22. 22.

    , , & Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011).

  23. 23.

    & Multisetting Bell-type inequalities for detecting genuine multipartite entanglement. Phys. Rev. A 83, 062123 (2011).

  24. 24.

    , , , & A framework for the study of symmetric full-correlation Bell-like inequalities. J. Phys. A 45, 125301 (2012).

  25. 25.

    , & Device-independent randomness generation in the presence of weak cross-talk. Phys. Rev. Lett. 110, 100504 (2013).

  26. 26.

    et al. How to realize a universal quantum gate with trapped ions. Appl. Phys. B 77, 789–796 (2003).

  27. 27.

    & Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

  28. 28.

    et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

  29. 29.

    , , , & Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002).

  30. 30.

    & Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002).

  31. 31.

    , & Experimental violation of Svetlichny’s inequality. New J. Phys. 11, 073051 (2009).

Download references

Acknowledgements

We thank Y-C. Liang for useful discussions. We gratefully acknowledge support by the Austrian Science Fund (FWF) through the SFB FoQuS (FWF Project No. F4006-N16) and by the Swiss NCCR ‘Quantum Science and Technology’, the CHIST-ERA DIQIP, and the European ERC-AG QORE. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office grant W911NF-10-1-0284. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the US Government.

Author information

Author notes

    • Julio T. Barreiro
    •  & Jean-Daniel Bancal

    These authors contributed equally to this work

    • Julio T. Barreiro

    Present addresses: Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 Munich, Germany & Max-Planck Institute of Quantum Optics, 85748 Garching, Germany

    • Jean-Daniel Bancal

    Present addresses: Centre for Quantum Technologies, National University of Singapore 117543, Singapore

Affiliations

  1. Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria

    • Julio T. Barreiro
    • , Philipp Schindler
    • , Daniel Nigg
    • , Markus Hennrich
    • , Thomas Monz
    •  & Rainer Blatt
  2. Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland

    • Jean-Daniel Bancal
    •  & Nicolas Gisin
  3. Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstrasse 21A, 6020 Innsbruck, Austria

    • Rainer Blatt

Authors

  1. Search for Julio T. Barreiro in:

  2. Search for Jean-Daniel Bancal in:

  3. Search for Philipp Schindler in:

  4. Search for Daniel Nigg in:

  5. Search for Markus Hennrich in:

  6. Search for Thomas Monz in:

  7. Search for Nicolas Gisin in:

  8. Search for Rainer Blatt in:

Contributions

J.T.B. and J-D.B. developed the research; J.T.B., P.S. and D.N. performed the experiments; J-D.B. and N.G. provided the theoretical part; J.T.B., J-D.B., T.M. and P.S. analysed the data; J.T.B., P.S., D.N., T.M., M.H. and R.B. contributed to the experimental set-up; J.T.B. and J-D.B. wrote the manuscript, with revisions provided by P.S., T.M., N.G. and R.B; all authors contributed to the discussion of the results and manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Julio T. Barreiro or Jean-Daniel Bancal.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2705

Further reading