Article | Published:

Interaction-driven localization in holography

Nature Physics volume 9, pages 649655 (2013) | Download Citation

Abstract

Interaction-driven charge localization across a quantum phase transition involves a fundamental rearrangement of the low-energy degrees of freedom. This fact challenges weakly interacting quasiparticle descriptions of the physics. The canonical example of such localization is the Mott transition. Here, we present a localization mechanism distinct from ‘Mottness’, which employs strong interactions in an essential way. Our mechanism allows anisotropic localization: phases can arise that are insulating in some directions and metallic in others. The central observation is that localization occurs if an operator that breaks translation invariance, a ‘generalized Umklapp’ operator, becomes relevant in the effective low-energy theory. This does not occur at weak coupling. We realize such localization in a strongly interacting theory described by means of the holographic correspondence. Our model captures key features of metal–insulator transitions including major spectral weight transfer and bad (incoherent) metallic behaviour in the vicinity of the transition. The localized phase has a power law gap in the optical conductivity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1236 (1998).

  2. 2.

    in Conductor Insulator Quantum Phase Transitions (eds Dobrosavljevic, V., Trivedi, N. & Valles, J. M. Jr) (Oxford Univ. Press, 2012).

  3. 3.

    , , , & Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011).

  4. 4.

    , & Universality of the Mott–Ioffe–Regel limit in metals. Phil. Mag. 84, 2847–2864 (2004).

  5. 5.

    , & Colloquium: Saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085–1099 (2003).

  6. 6.

    et al. Mott transition and transport crossovers in the organic compound κ-(BEDT−TTF)2Cu[N(CN)2]Cl. Phys. Rev. Lett. 91, 016401 (2003).

  7. 7.

    & Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995).

  8. 8.

    in Black Holes in Higher Dimensions (ed. Horowitz, G.) Ch. 14 (Cambridge Univ. Press, 2012).

  9. 9.

    & The quasi-normal modes of quantum criticality. Phys. Rev. B 86, 235115 (2012).

  10. 10.

    et al. Frequency- and temperature-dependent conductivity in YBa2Cu3O6+x crystals. Phys. Rev. B 42, 6342–6362 (1990).

  11. 11.

    et al. An extended infrared study of the (p,T) phase diagram of the p-doped Cu–O plane. New J. Phys. 13, 123009 (2011).

  12. 12.

    , , & Quantum theory of the smectic metal state in stripe phases. Phys. Rev. Lett. 85, 2160–2163 (2000).

  13. 13.

    & Two-dimensional anisotropic non-Fermi-liquid phase of coupled Luttinger liquids. Phys. Rev. Lett. 86, 676–679 (2001).

  14. 14.

    & Locally critical resistivities from umklapp scattering. Phys. Rev. Lett. 108, 241601 (2012).

  15. 15.

    , , & Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007).

  16. 16.

    & Impure AdS/CFT correspondence. Phys. Rev. D 77, 106009 (2008).

  17. 17.

    , , & Lattice potentials and fermions in holographic non Fermi-liquids: Hybridizing local quantum criticality. J. High Energy Phys. 2012, 036 (October 2012).

  18. 18.

    , & Optical conductivity with holographic lattices. J. High Energy Phys. 2012, 168 (July 2012).

  19. 19.

    , & Further evidence for lattice-induced scaling. J. High Energy Phys. 2012, 102 (November 2012).

  20. 20.

    & The helical phase of chiral nematic liquid crystals as the Bianchi VII(0) group manifold. Phys. Rev. E 84, 031709 (2011).

  21. 21.

    , & Gravity dual of spatially modulated phase. Phys. Rev. D 81, 044018 (2010).

  22. 22.

    & Holographic helical superconductors. J. High Energy Phys. 2011, 091 (December 2011).

  23. 23.

    & Black holes dual to helical current phases. Phys. Rev. D 86, 064010 (2012).

  24. 24.

    , , , , & Bianchi attractors: A classification of extremal black brane geometries. J. High Energy Phys. 2012, 193 (July 2012).

  25. 25.

    & Fractionalization of holographic Fermi surfaces. Class. Quant. Grav. 29, 194001 (2012).

  26. 26.

    & Holographic order parameter for charge fractionalization. Phys. Rev. D 86, 066001 (2012).

  27. 27.

    & Charge expulsion from black brane horizons, and holographic quantum criticality in the plane. J. High Energy Phys. 2012, 105 (September 2012).

  28. 28.

    , & Solution of the one-dimensional electron gas on a lattice. Phys. Rev. B 13, 1272–1276 (1976).

  29. 29.

    , , & Conformality Lost. Phys. Rev. D 80, 125005 (2009).

  30. 30.

    & Universal linear in temperature resistivity from black hole superradiance. Phys. Rev. D 86, 124046 (2012).

  31. 31.

    , , & Power-law dependence of the optical conductivity observed in the quantum spin-liquid compound κ-(BEDT−TTF)2Cu2(CN)3. Phys. Rev. B 86, 155150 (2012).

  32. 32.

    et al. Spin induced optical conductivity in the spin liquid candidate herbertsmithite. Preprint at  (2013).

  33. 33.

    , & Semi-local quantum liquids. J. High Energy Phys. 2012, 086 (April 2012).

  34. 34.

    & Generalized holographic quantum criticality at finite density. J. High Energy Phys. 2011, 036 (December 2011).

  35. 35.

    & Spectral weight in holographic scaling geometries. J. High Energy Phys. 2012, 078 (July 2012).

  36. 36.

    , , & The Pauli exclusion principle at strong coupling: Holographic matter and momentum space. J. High Energy Phys. 2013, 104 (March 2013).

  37. 37.

    , & Holographic superconductor/insulator transition at zero temperature. J. High Energy Phys. 2010, 131 (March 2010).

  38. 38.

    , , , & Effective holographic theories for low-temperature condensed matter systems. J. High Energy Phys. 2010, 151 (November 2010).

  39. 39.

    & The particle number in Galilean holography. J. High Energy Phys. 2011, 137 (January 2011).

  40. 40.

    The Theory of Superconductivity in the High-Tc Cuprate Superconductors (PUP, 1997).

  41. 41.

    & Minkowski space correlators in AdS / CFT correspondence: Recipe and applications. J. High Energy Phys. 2002, 042 (September 2002).

  42. 42.

    & Holographic superconductors with various condensates. Phys. Rev. D 78, 126008 (2008).

Download references

Acknowledgements

We acknowledge helpful discussions with J. Gauntlett, G. Horowitz, S. Kivelson, S. Sachdev, D. Tong and J. Zaanen. S.A.H. is partially supported by a Sloan Research Fellowship and by a DOE Early Career Award.

Author information

Affiliations

  1. Blackett Laboratory, Imperial College, London, SW7 2AZ, UK

    • Aristomenis Donos
  2. Department of Physics, Stanford University, Stanford, California 94305-4060, USA

    • Sean A. Hartnoll

Authors

  1. Search for Aristomenis Donos in:

  2. Search for Sean A. Hartnoll in:

Contributions

A.D. and S.A.H. were both involved in the conception, technical computations and writing up of this work.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Sean A. Hartnoll.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2701

Further reading