Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Population distribution of product states following three-body recombination in an ultracold atomic gas

Abstract

Three-body recombination is a collision process where two atoms combine to form a molecule and a third atom carries away part of the released reaction energy. Here, we experimentally determine for the first time the population distribution of the molecular reaction products after a three-body recombination for non-resonant particle interactions. The key to our measurements is a sensitive detection scheme that combines the photoionization of the molecules with subsequent ion trapping. Using an ultracold 87Rb gas at very low kinetic energy below h×20 kHz, we find a broad population of final states with binding energies of up to h×750 GHz. This is in contrast with previous experiments, performed in the resonant interaction regime, that found a dominant population of only the most weakly bound molecular state or the occurrence of Efimov resonances. This work may contribute to the development of an in-depth model that can qualitatively and quantitatively predict the reaction products of three-body recombination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of recombination and ionization in the atom–ion trap.
Figure 2: Dependence of the ion production rate Γion on atomic density.
Figure 3: REMPI spectrum.
Figure 4: Dependence of the ion production rate on the intensity of the dipole trap laser.
Figure 5: Overview over relevant molecular levels and transitions.

References

  1. 1

    Hess, H. F. et al. Observation of three-body recombination in spin-polarized hydrogen. Phys. Rev. Lett. 51, 483–486 (1983).

    ADS  Article  Google Scholar 

  2. 2

    Burt, E. A. et al. Coherence, correlations, and collisions: What one learns about Bose–Einstein condensates from their decay. Phys. Rev. Lett. 79, 337–340 (1997).

    ADS  Article  Google Scholar 

  3. 3

    Söding, J. et al. Three-body decay of a rubidium Bose–Einstein condensate. Appl. Phys. B 69, 257–261 (1999).

    ADS  Article  Google Scholar 

  4. 4

    Esry, B. D., Greene, C. H. & Burke, J. P. Recombination of three atoms in the ultracold limit. Phys. Rev. Lett. 83, 1751–1754 (1999).

    ADS  Article  Google Scholar 

  5. 5

    Suno, H. & Esry, B. D. Three-body recombination in cold helium–helium-alkali-metal-atom collisions. Phys. Rev. A 80, 062702 (2009).

    ADS  Article  Google Scholar 

  6. 6

    Wang, Y., D’Incao, J. P. & Esry, B. D. Cold three-body collisions in hydrogen–hydrogen-alkali-metal atomic systems. Phys. Rev. A 83, 032703 (2011).

    ADS  Article  Google Scholar 

  7. 7

    Guevara, N. L., Wang, Y. & Esry, B. D. New class of three-body states. Phys. Rev. Lett. 108, 213202 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Fedichev, P. O., Reynolds, M. W. & Shlyapnikov, G. V. Three-body recombination of ultracold atoms to a weakly bound s level. Phys. Rev. Lett. 77, 2921–2924 (1996).

    ADS  Article  Google Scholar 

  9. 9

    Bedaque, P. F., Braaten, E. & Hammer, H-W. Three-body recombination in Bose gases with large scattering length. Phys. Rev. Lett. 85, 908–911 (2000).

    ADS  Article  Google Scholar 

  10. 10

    Efimov, V. Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563–564 (1970).

    ADS  Article  Google Scholar 

  11. 11

    Braaten, E. & Hammer, H-W. Three-body recombination into deep bound states in a Bose gas with large scattering length. Phys. Rev. Lett. 87, 160407 (2001).

    ADS  Article  Google Scholar 

  12. 12

    Kraemer, T. et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315–318 (2006).

    ADS  Article  Google Scholar 

  13. 13

    Weber, T., Herbig, J., Mark, M., Nägerl, H-C. & Grimm, R. Three-body recombination at large scattering lengths in an ultracold atomic gas. Phys. Rev. Lett. 91, 123201 (2003).

    ADS  Article  Google Scholar 

  14. 14

    Jochim, S. et al. Pure gas of optically trapped molecules created from Fermionic atoms. Phys. Rev. Lett. 91, 240402 (2003).

    ADS  Article  Google Scholar 

  15. 15

    Simoni, A. & Launay, J-M. Ultracold atom-molecule collisions with hyperfine coupling. Laser Phys. 16, 707–712 (2006).

    ADS  Article  Google Scholar 

  16. 16

    Bates, D. R., Kingston, A. E. & McWhirter, R. W. P. Recombination between electrons and atomic ions. I. Optically thin plasmas. Proc. R. Soc. Lond. Ser A. 267, 297–312 (1962).

    ADS  Article  Google Scholar 

  17. 17

    Flower, D. R. & Harris, G. J. Three-body recombination of hydrogen during primordial star formation. Mon. Not. R. Astronom. Soc. 377, 705–710 (2007).

    ADS  Article  Google Scholar 

  18. 18

    Lozeille, J. et al. Detection by two-photon ionization and magnetic trapping of cold Rb2 triplet state molecules. Eur. Phys. J. D 39, 261–269 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Fioretti, A. et al. Formation of cold Cs2 molecules through photoassociation. Phys. Rev. Lett. 80, 4402–4405 (1998).

    ADS  Article  Google Scholar 

  20. 20

    Gabbanini, C., Fioretti, A., Lucchesini, A., Gozzini, S. & Mazzoni, M. Cold rubidium molecules formed in a magneto-optical trap. Phys. Rev. Lett. 84, 2814–2817 (2000).

    ADS  Article  Google Scholar 

  21. 21

    Huang, Y. et al. Formation, detection and spectroscopy of ultracold Rb2 in the ground X1Σg+ state. J. Phys. B 39, S857–S869 (2006).

    ADS  Article  Google Scholar 

  22. 22

    Salzmann, W. et al. Coherent transients in the femtosecond photoassociation of ultracold molecules. Phys. Rev. Lett. 100, 233003 (2008).

    ADS  Article  Google Scholar 

  23. 23

    Sullivan, S. T. et al. Trapping molecular ions formed via photo-associative ionization of ultracold atoms. Phys. Chem. Chem. Phys. 13, 18859–18863 (2011).

    Article  Google Scholar 

  24. 24

    Mudrich, M. et al. Spectroscopy of triplet states of Rb2 by femtosecond pump–probe photoionization of doped helium nanodroplets. Phys. Rev. A 80, 042512 (2009).

    ADS  Article  Google Scholar 

  25. 25

    Strauss, C. et al. Hyperfine, rotational, and vibrational structure of the a3Σu+ state of 87Rb2 . Phys. Rev. A 82, 052514 (2010).

    ADS  Article  Google Scholar 

  26. 26

    Takekoshi, T. et al. Hyperfine, rotational, and Zeeman structure of thelowest vibrational levels of the 87Rb2 (1) 3Σg+ state. Phys. Rev. A 83, 062504 (2011).

    ADS  Article  Google Scholar 

  27. 27

    Drozdova, A. Study of Spin-Orbit Coupled Electronic States of Rb 2 , NaCs and NaK Molecules. Laser Spectroscopy and Accurate Coupled-channel Deperturbation Analysis PhD thesis, Univ. de Lyon and Lomonosov State Univ. (2012).

  28. 28

    Mukaiyama, T., Abo-Shaeer, J. R., Xu, K., Chin, J. K. & Ketterle, W. Dissociation and decay of ultracold sodium molecules. Phys. Rev. Lett. 92, 180402 (2004).

    ADS  Article  Google Scholar 

  29. 29

    Staanum, P., Kraft, S. D., Lange, J., Wester, R. & Weidemüller, M. Experimental investigation of ultracold atom-molecule collisions. Phys. Rev. Lett. 96, 023201 (2006).

    ADS  Article  Google Scholar 

  30. 30

    Zahzam, N., Vogt, T., Mudrich, M., Comparat, D. & Pillet, P. Atom-molecule collisions in an optically trapped gas. Phys. Rev. Lett. 96, 023202 (2006).

    ADS  Article  Google Scholar 

  31. 31

    Quéméner, G., Launay, J-M. & Honvault, P. Ultracold collisions between Li atoms and Li2 diatoms in high vibrational states. Phys. Rev. A 75, 050701 (2007).

    ADS  Article  Google Scholar 

  32. 32

    Schmid, S., Härter, A., Frisch, A., Hoinka, S. & Hecker Denschlag, J. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms. Rev. Sci. Instrum. 83, 053108 (2012).

    ADS  Article  Google Scholar 

  33. 33

    Schmid, S., Härter, A. & Hecker Denschlag, J. Dynamics of a cold trapped ion in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 133202 (2010).

    ADS  Article  Google Scholar 

  34. 34

    Härter, A. et al. Single ion as a three-body reaction center in an ultracold atomic gas. Phys. Rev. Lett. 109, 123201 (2012).

    ADS  Article  Google Scholar 

  35. 35

    Aymar, M., Azizi, S. & Dulieu, O. Model-potential calculations for ground and excited Σ states of Rb2+, Cs2+ and RbCs+ ions. J. Phys. B 36, 4799–4812 (2003).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Schmid and A. Brunner for support during early stages of the experiment and O. Dulieu, B. Esry, J. d’Incao, W. Stwalley, U. Heinzmann, J. Hutson, P. Soldan, T. Bergeman and A. Drozdova for valuable information and fruitful discussions. This work was supported by the German Research Foundation DFG within the SFB/TRR21.

Author information

Affiliations

Authors

Contributions

A.H. and A.K. performed the experiments in the atom–ion trap set-up; M.D. and B.D. performed spectroscopic measurements on Rb2 molecules; A.H., A.K., E.T. and J.H.D. analysed data; A.H., E.T. and J.H.D. wrote the paper.

Corresponding author

Correspondence to J. Hecker Denschlag.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 422 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Härter, A., Krükow, A., Deiß, M. et al. Population distribution of product states following three-body recombination in an ultracold atomic gas. Nature Phys 9, 512–517 (2013). https://doi.org/10.1038/nphys2661

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing