Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A highly resistive layer within the crust of X-ray pulsars limits their spin periods

Subjects

Abstract

The lack of isolated X-ray pulsars with spin periods longer than 12 s raises the question of where the population of evolved high-magnetic-field neutron stars has gone. Unlike canonical radiopulsars, X-ray pulsars are not subject to physical limits to the emission mechanism nor observational biases against the detection of sources with longer periods. Here we show that a highly resistive layer in the innermost part of the crust of neutron stars naturally limits the spin period to a maximum value of about 10–20 s. This highly resistive layer is expected if the inner crust is amorphous and heterogeneous in nuclear charge, possibly owing to the existence of a nuclear ‘pasta’ phase. Our findings suggest that the maximum period of isolated X-ray pulsars may be the first observational evidence for an amorphous inner crust, whose properties can be further constrained by future X-ray timing missions combined with more detailed models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Impurity parameter Qimp (left) and electrical resistivity (right) as a function of density for the four models with M = 1.4M.
Figure 3
Figure 4: P−Ṗ diagram for magnetars, X-ray isolated neutron stars and rotation-powered pulsars with X-ray emission.

Similar content being viewed by others

References

  1. Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E. & Hessels, J. W. T. A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083 (2010).

    Article  ADS  Google Scholar 

  2. Van Kerkwijk, M. H., Breton, R. P. & Kulkarni, S. R. Evidence for a massive neutron star from a radial-velocity study of the companion to the black-widow pulsar PSR B1957+20. Astrophys. J. 728, 95–102 (2011).

    Article  ADS  Google Scholar 

  3. Shternin, P. S., Yakovlev, D. G., Heinke, C. O., Ho, W. C. G. & Patnaude, D. J. Cooling neutron star in the Cassiopeia A supernova remnant: Evidence for superfluidity in the core. Mon. Not. R. Astron. Soc. 412, L108–L112 (2011).

    Article  ADS  Google Scholar 

  4. Steiner, A. W., Lattimer, J. M. & Brown, E. F. The equation of state from observed masses and radii of neutron stars. Astrophys. J. 722, 33–54 (2010).

    Article  ADS  Google Scholar 

  5. Mereghetti, S. The strongest cosmic magnets: Soft γ-ray repeaters and anomalous X-ray pulsars. Astronom. Astrophys. Rev. 15, 225–287 (2008).

    Article  ADS  Google Scholar 

  6. Gavriil, F. P., Kaspi, V. M. & Woods, P.M. Magnetar-like X-ray bursts from an anomalous X-ray pulsar. Nature 419, 142–144 (2002).

    Article  ADS  Google Scholar 

  7. Palmer, D. M. et al. A giant γ-ray flare from the magnetar SGR 1806-20. Nature 434, 1107–1109 (2005).

    Article  ADS  Google Scholar 

  8. Camilo, F. et al. Transient pulsed radio emission from a magnetar. Nature 442, 892–895 (2006).

    Article  ADS  Google Scholar 

  9. Duncan, R. C. & Thompson, C. Formation of very strongly magnetized neutron stars—Implications for γ-ray bursts. Astrophys. J. 392, L9–L13 (1992).

    Article  ADS  Google Scholar 

  10. Kaspi, V. M. Grand unification of neutron stars. Proc. Natl Acad. Sci. USA 107, 7147–7152 (2010).

    Article  ADS  Google Scholar 

  11. Psaltis, D. & Miller, M. C. Implications of the narrow period distribution of anomalous X-Ray pulsars and soft γ-ray repeaters. Astrophys. J. 578, 325–329 (2002).

    Article  ADS  Google Scholar 

  12. Colpi, M., Geppert, U. & Page, D. Period clustering of the anomalous X-Ray pulsars and magnetic field decay in magnetars. Astrophys. J. 529, L29–L32 (2000).

    Article  ADS  Google Scholar 

  13. Rea, N. et al. A low-magnetic-field soft γ repeater. Science 330, 944–946 (2010).

    Article  ADS  Google Scholar 

  14. Turolla, R., Zane, S., Pons, J. A., Esposito, P. & Rea, N. Is SGR 0418+5729 indeed a waning magnetar? Astrophys. J. 740, 105–111 (2011).

    Article  ADS  Google Scholar 

  15. Rea, N. et al. A new low magnetic field magnetar: The 2011 outburst of swift J1822.3-1606. Astrophys. J. 754, 27–40 (2012).

    Article  ADS  Google Scholar 

  16. Goldreich, P. & Reisenegger, A. Magnetic field decay in isolated neutron stars. Astrophys. J. 395, 250–258 (1992).

    Article  ADS  Google Scholar 

  17. Cumming, A., Arras, P. & Zweibel, E. Magnetic field evolution in neutron star crusts due to the hall effect and ohmic decay. Astrophys. J. 609, 999–1017 (2004).

    Article  ADS  Google Scholar 

  18. Chamel, N. & Haensel, P. Physics of neutron star crusts. Living Rev. Relat. 11, 10 (2008).

    Article  ADS  Google Scholar 

  19. Anderson, P. W. & Itoh, N. Pulsar glitches and restlessness as a hard superfluidity phenomenon. Nature 256, 25–27 (1975).

    Article  ADS  Google Scholar 

  20. Strohmayer, T. E. & Watts, A. L. The 2004 hyperflare from SGR 1806-20: Further evidence for global torsional vibrations. Astrophys. J. 653, 593–601 (2006).

    Article  ADS  Google Scholar 

  21. Brown, E. F. & Cumming, A. Mapping crustal heating with the cooling light curves of quasi-persistent transients. Astrophys. J. 698, 1020–1032 (2009).

    Article  ADS  Google Scholar 

  22. Pons, J. A. & Geppert, U. Magnetic field dissipation in neutron star crusts: From magnetars to isolated neutron stars. Astron. Astrophys. 470, 303–315 (2007).

    Article  ADS  Google Scholar 

  23. Viganò, D., Pons, J. A. & Miralles, J. A. A new code for the Hall-driven magnetic evolution of neutron stars. Comput. Phys. Comm. 183, 2042–2053 (2012).

    Article  ADS  Google Scholar 

  24. Ravenhall, D. G., Pethick, C. J. & Wilson, J. R. Structure of matter below nuclear saturation density. Phys. Rev. Lett. 50, 2066–2069 (1983).

    Article  ADS  Google Scholar 

  25. Horowitz, C. J., Pérez-Garcı´a, M. A., Berry, D. K. & Piekarewicz, J. Dynamical response of the nuclear pasta in neutron star crusts. Phys. Rev. C 72, 035801 (2005).

    Article  ADS  Google Scholar 

  26. Horowitz, C. J. & Berry, D. K. Shear viscosity and thermal conductivity of nuclear pasta. Phys. Rev. C 78, 035806 (2008).

    Article  ADS  Google Scholar 

  27. Watanabe, G., Iida, K. & Sato, K. Thermodynamic properties of nuclear pasta in neutron star crusts. Nucl. Phys. A 676, 455–473 (2000).

    Article  ADS  Google Scholar 

  28. Sotani, H. Constraints on pasta structure of neutron stars from oscillations in giant flares. Mon. Not. R. Astron. Soc. 417, L70–L73 (2011).

    Article  ADS  Google Scholar 

  29. Gearheart, M., Newton, W.G., Hooker, J. & Li, B-An. Upper limits on the observational effects of nuclear pasta in neutron stars. Mon. Not. R. Astron. Soc. 418, 2343–2349 (2011).

    Article  ADS  Google Scholar 

  30. Jones, P. B. Disorder resistivity of solid neutron-star matter. Phys. Rev. Lett. 93, 221101 (2004).

    Article  ADS  Google Scholar 

  31. Jones, P. B. Heterogeneity of solid neutron-star matter: Transport coefficients and neutrino emissivity. Mon. Not. R. Astron. Soc. 351, 956–966 (2004).

    Article  ADS  Google Scholar 

  32. Magierski, P. & Heenen, P. H. Structure of the inner crust of neutron stars: Crystal lattice or disordered phase? Phys. Rev. C 65, 045804 (2002).

    Article  ADS  Google Scholar 

  33. Horowitz, C. J. & Berry, D. K. Structure of accreted neutron star crust. Phys. Rev. C 79, 065803 (2009).

    Article  ADS  Google Scholar 

  34. Horowitz, C. J., Caballero, O. L. & Berry, D. K. Thermal conductivity and phase separation of the crust of accreting neutron stars. Phys. Rev. E 79, 026103 (2009).

    Article  ADS  Google Scholar 

  35. Hughto, J., Schneider, A. S., Horowitz, C. J. & Berry, D. K. Diffusion in Coulomb crystals. Phys. Rev. E 84, 016401 (2011).

    Article  ADS  Google Scholar 

  36. Daligault, J. & Gupta, S. Electron-ion scattering in dense multi-component plasmas: Application to the outer crust of an accreting neutron star. Astrophys. J. 703, 994–1011 (2009).

    Article  ADS  Google Scholar 

  37. Pons, J. A., Miralles, J. A. & Geppert, U. Magneto-thermal evolution of neutron stars. Astron. Astrophys. 496, 207–216 (2009).

    Article  ADS  Google Scholar 

  38. Aguilera, D. N., Pons, J. A. & Miralles, J. A. The impact of magnetic field on the thermal evolution of neutron stars. Astrophys. J. 673, L167–L170 (2008).

    Article  ADS  Google Scholar 

  39. Li, J., Spitkovsky, A. & Tchekhovskoy, A. Resistive solutions for pulsar magnetospheres. Astrophys. J. 746, 60 (2012).

    Article  ADS  Google Scholar 

  40. Ho, W. C. G & Andersson, N. Rotational evolution of young pulsars due to superfluid decoupling. Nature Phys. 8, 787–789 (2012).

    Article  ADS  Google Scholar 

  41. Feroci, M. et al. The large observatory for X-ray timing (LOFT). Exp. Astronom. 34, 415–444 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the grants AYA 2010-21097-C03-02, AYA2012-39303, SGR2009-811, TW2010005 and iLINK 2011-0303. N.R. is supported by a Ramon y Cajal Research Fellowship and D.V. by the Prometeo/2009/103 grant.

Author information

Authors and Affiliations

Authors

Contributions

J.A.P. and D.V. contributed to developing the model, performed the calculations and wrote the manuscript. N.R. contributed to writing the manuscript and selected and checked the observational data.

Corresponding author

Correspondence to José A. Pons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pons, J., Viganò, D. & Rea, N. A highly resistive layer within the crust of X-ray pulsars limits their spin periods. Nature Phys 9, 431–434 (2013). https://doi.org/10.1038/nphys2640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2640

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing