Abstract
Dynamical maps describe general transformations of the state of a physical system—their iteration interpreted as generating a discrete time evolution. Prime examples include classical nonlinear systems undergoing transitions to chaos. Quantum mechanical counterparts show intriguing phenomena such as dynamical localization on the single-particle level. Here we extend the concept of dynamical maps to a many-particle context, where the time evolution involves both coherent and dissipative elements: we experimentally explore the stroboscopic dynamics of a complex many-body spin model with a universal trapped ion quantum simulator. We generate long-range phase coherence of spin by an iteration of purely dissipative quantum maps and demonstrate the characteristics of competition between combined coherent and dissipative non-equilibrium evolution—the hallmark of a previously unobserved dynamical phase transition. We assess the influence of experimental errors in the quantum simulation and tackle this problem by developing an efficient error detection and reduction toolbox based on quantum feedback.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
IBM Q Experience as a versatile experimental testbed for simulating open quantum systems
npj Quantum Information Open Access 07 January 2020
-
Quantum Neimark-Sacker bifurcation
Scientific Reports Open Access 29 November 2019
-
An artificial neuron implemented on an actual quantum processor
npj Quantum Information Open Access 29 March 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Wrachtrup, J. & Jelezko, F. Processing quantum information in diamond. J. Phys. Condens. Matter 18, 807–824 (2006).
Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).
O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).
Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).
Schneider, C., Porras, D. & Schätz, T. Experimental quantum simulations of many-body physics with trapped ions. Rep. Prog. Phys. 75 024401 (2012).
Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).
Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).
Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).
Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).
Bacon, D. et al. Universal simulation of Markovian quantum dynamics. Phys. Rev. A 64, 062302 (2001).
Lloyd, S. & Viola, L. Engineering quantum dynamics. Phys. Rev. A 65, 010101 (2001).
Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).
Baggio, G., Ticozzi, F. & Viola, L. in 2012 IEEE 51st Annual Conference on Decision and Control (CDC) 1072–1077 (IEEE, 2012).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
Lanyon, B. P. et al. Universal digital quantum simulation with trapped ions. Science 334, 57–61 (2011).
Zhang, J., Yung, M-H., Laflamme, R., Aspuru-Guzik, A. & Baugh, J. Digital quantum simulation of the statistical mechanics of a frustrated magnet. Nature Commun. 3, 880 (2012).
Poyatos, J. F., Cirac, J. I. & Zoller, P. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728–4731 (1996).
Cho, J., Bose, S. & Kim, M. S. Optical pumping into many-body entanglement. Phys. Rev. Lett. 106, 020504 (2011).
Kastoryano, M. J., Reiter, F. & Sørensen, A. S. Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011).
Krauter, H. et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011).
Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).
Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nature Phys. 5, 633–636 (2009).
Pastawski, F., Clemente, L. & Cirac, J. I. Quantum memories based on engineered dissipation. Phys. Rev. A 83, 012304 (2011).
Kliesch, M., Barthel, T., Gogolin, C., Kastoryano, M. & Eisert, J. Dissipative quantum Church-Turing theorem. Phys. Rev. Lett. 107, 120501 (2011).
Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).
Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A Rydberg quantum simulator. Nature Phys. 6, 382–388 (2010).
Diehl, S., Rico, E., Baranov, M. A. & Zoller, P. Topology by dissipation in atomic quantum wires. Nature Phys. 7, 971–977 (2011).
Gardiner, C. W. & Zoller, P. Quantum Noise (Springer, 1999).
Reichl, L. E. The Transition to Chaos In Conservative Classical Systems: Quantum Manifestations (Springer, 1992).
Chirikov, B. V. A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979).
Izrailev, F. M. Simple models of quantum chaos: spectrum and eigenfunctions. Phys. Rep. 196, 299–392 (1990).
Haake, F. Quantum Signatures of Chaos (Synergetics Series, Springer, 2010).
Moore, F. L., Robinson, J. C., Bharucha, C. F., Sundaram, B. & Raizen, M. G. Atom optics realization of the quantum delta-kicked rotor. Phys. Rev. Lett. 75, 4598–4601 (1995).
Ammann, H., Gray, R., Shvarchuck, I. & Christensen, N. Quantum delta-kicked rotor: Experimental observation of decoherence. Phys. Rev. Lett. 80, 4111–4115 (1998).
d’Arcy, M. B., Godun, R. M., Oberthaler, M. K., Cassettari, D. & Summy, G. S. Quantum enhancement of momentum diffusion in the delta-kicked rotor. Phys. Rev. Lett. 87, 074102 (2001).
Henderson, K., Kelkar, H., Li, T. C., Gutierrez-Medina, G. & Raizen, M. G. Bose–Einstein condensate driven by a kicked rotor in a finite box. Europhys. Lett. 75, 392 (2006).
Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).
Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008).
Kim, K. et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010).
Islam, R. et al. Onset of a quantum phase transition with a trapped ion quantum simulator. Nature Commun. 2, 377 (2011).
Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).
Diehl, S., Tomadin, A., Micheli, A., Fazio, R. & Zoller, P. Dynamical phase transitions and instabilities in open atomic many-body systems. Phys. Rev. Lett. 105, 015702 (2010).
Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 1999).
Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).
Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011).
Acknowledgements
We gratefully acknowledge support by the Austrian Science Fund (FWF), through the SFB FoQus (FWF Project No. F4002-N16 and F4016-N16) and the START grant Y 581-N16 (S.D.), by the European Commission (AQUTE), as well as the Institut für Quantenoptik und Quanteninformation GmbH. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office grant W911NF-10-1-0284. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI or the US Government. M.M. acknowledges support by the CAM research consortium QUITEMAD S2009-ESP-1594, European Commission PICC: FP7 2007-2013, Grant No. 249958, and the Spanish MICINN grant FIS2009-10061.
Author information
Authors and Affiliations
Contributions
M.M., P.S., J.T.B. and S.D. developed the research, based on theoretical ideas conceived with P.Z.; P.S. and D.N. performed the experiments; P.S. and T.M. analysed the data; P.S., J.T.B., D.N., T.M., E.A.M., M.H. and R.B. contributed to the experimental set-up; P.S., M.M. and S.D wrote the manuscript, with revisions provided by J.T.B., P.Z. and R.B; all authors contributed to the discussion of the results and manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 1937 kb)
Rights and permissions
About this article
Cite this article
Schindler, P., Müller, M., Nigg, D. et al. Quantum simulation of dynamical maps with trapped ions. Nature Phys 9, 361–367 (2013). https://doi.org/10.1038/nphys2630
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys2630
This article is cited by
-
Quantum simulation of discretized harmonic oscillator
Quantum Studies: Mathematics and Foundations (2021)
-
IBM Q Experience as a versatile experimental testbed for simulating open quantum systems
npj Quantum Information (2020)
-
An artificial neuron implemented on an actual quantum processor
npj Quantum Information (2019)
-
Quantum Neimark-Sacker bifurcation
Scientific Reports (2019)
-
Coherence and entropy squeezing in the spin-boson model under non-Markovian environment
Optical and Quantum Electronics (2019)