Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The shapes of cooperatively rearranging regions in glass-forming liquids

Abstract

The cooperative rearrangement of groups of many molecules has long been thought to underlie the dramatic slowing of liquid dynamics on cooling towards the glassy state. For instance, there exists experimental evidence for cooperatively rearranging regions (CRRs) on the nanometre length scale near the glass transition. The random first-order transition (RFOT) theory of glasses predicts that, near the glass-transition temperature, these regions are compact, but computer simulations and experiments on colloids suggest CRRs are string-like. Here, we present a microscopic theory within the framework of RFOT, which unites the two situations. We show that the shapes of CRRs in glassy liquids should change from being compact at low temperatures to fractal or ‘stringy’ as the dynamical crossover temperature from activated to collisional transport is approached from below. This theory predicts a correlation of the ratio of the dynamical crossover temperature to the laboratory glass-transition temperature, and the heat-capacity discontinuity at the glass transition. The predicted correlation quantitatively agrees with experimental results for 21 materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The shape of CRRs at Tg and Tc.
Figure 2: Predictions for the crossover temperatures.
Figure 3: Free-energy contours for the fuzzy-sphere model.
Figure 4: Predicted and experimental viscosity.
Figure 5: Shape characteristics for the fuzzy sphere.
Figure 6: Radial dimensions of the fuzzy sphere.

Similar content being viewed by others

References

  1. Singh, Y., Stoessel, J. P. & Wolynes, P. G. Hard-sphere glass and the density-functional theory of aperiodic crystals. Phys. Rev. Lett. 54, 1059–1062 (1985).

    Article  ADS  Google Scholar 

  2. Kirkpatrick, T. R. & Wolynes, P. G. Connections between some kinetic and equilibrium theories of the glass transition. Phys. Rev. A 35, 3072–3080 (1987).

    Article  ADS  Google Scholar 

  3. Kirkpatrick, T. R. & Wolynes, P. G. Stable and metastable states in mean-field potts and structural glasses. Phys. Rev. B 36, 8552–8564 (1987).

    Article  ADS  Google Scholar 

  4. Kirkpatrick, T. R. & Thirumalai, D. Dynamics of the structural glass-transition and the p-spin-interaction spin-glass model. Phys. Rev. Lett. 58, 2091–2094 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  5. Mezard, M. & Parisi, G. Thermodynamics of glasses: A first principles computation. Phys. Rev. Lett. 82, 747–750 (1999).

    Article  ADS  Google Scholar 

  6. Franz, S. & Toninelli, F. L. A field-theoretical approach to the spin glass transition: models with long but finite interaction range. J. Stat. Mech. Theor. Exp. P01008 (2005).

  7. Franz, S. Metastable states, relaxation times and free-energy barriers in finite dimensional glassy systems. Europhys. Lett. 73, 492–498 (2005).

    Article  ADS  Google Scholar 

  8. Bouchaud, J. P. & Biroli, G. On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004).

    Article  ADS  Google Scholar 

  9. Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).

    Article  ADS  Google Scholar 

  10. Xia, X. Y. & Wolynes, P. G. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl Acad. Sci. 97, 2990–2994 (2000).

    Article  ADS  Google Scholar 

  11. Xia, X. Y. & Wolynes, P. G. Microscopic theory of heterogeneity and nonexponential relaxations in supercooled liquids. Phys. Rev. Lett. 86, 5526–5529 (2001).

    Article  ADS  Google Scholar 

  12. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Ann. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  ADS  Google Scholar 

  13. Russell, E. V. & Israeloff, N. E. Direct observation of molecular cooperativity near the glass transition. Nature 408, 695–698 (2000).

    Article  ADS  Google Scholar 

  14. Deschenes, L. A. & Bout, D. A. V. Single-molecule studies of heterogeneous dynamics in polymer melts near the glass transition. Science 292, 255–258 (2001).

    Article  ADS  Google Scholar 

  15. Sillescu, H. Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids 243, 81–108 (1999).

    Article  ADS  Google Scholar 

  16. Richert, R. Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys. Condens. Matter 24, R703–R738 (2002).

    Article  Google Scholar 

  17. Kob, W., Donati, C., Plimpton, S. J., Poole, P. H. & Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827–2830 (1997).

    Article  ADS  Google Scholar 

  18. Gebremichael, Y., Vogel, M. & Glotzer, S. C. Particle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquid. J. Chem. Phys. 120, 4415–4427 (2004).

    Article  ADS  Google Scholar 

  19. Donati, C. et al. Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338–2341 (1998).

    Article  ADS  Google Scholar 

  20. Donati, C., Glotzer, S. C., Poole, P. H., Kob, W. & Plimpton, S. J. Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. Phys. Rev. E 60, 3107–3119 (1999).

    Article  ADS  Google Scholar 

  21. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  ADS  Google Scholar 

  22. Reinsberg, S. A., Heuer, A., Doliwa, B., Zimmermann, H. & Spiess, H. W. Comparative study of the nmr length scale of dynamic heterogeneities of three different glass formers. J. Non-Cryst. Solids 307–310, 208–214 (2002).

    Article  ADS  Google Scholar 

  23. Biroli, G. & Bouchaud, J. P. Diverging length scale and upper critical dimension in the mode-coupling theory of the glass transition. Europhys. Lett. 67, 21–27 (2004).

    Article  ADS  Google Scholar 

  24. Unger, C. & Klein, W. Nucleation theory near the classical spinodal. Phys. Rev. B 29, 2698–2708 (1984).

    Article  ADS  Google Scholar 

  25. Johnson, G., Mel’cuk, A. I., Gould, H., Klein, W. & Mountain, R. D. Molecular-dynamics study of long-lived structures in a fragile glass-forming liquid. Phys. Rev. E 57, 5707–5718 (1998).

    Article  ADS  Google Scholar 

  26. Stoessel, J. P. & Wolynes, P. G. Linear excitations and the stability of the hard-sphere glass. J. Chem. Phys. 80, 4502–4512 (1984).

    Article  ADS  Google Scholar 

  27. Dasgupta, C. & Valls, O. T. Free energy landscape of a dense hard-sphere system. Phys. Rev. E 59, 3123–3134 (1999).

    Article  ADS  Google Scholar 

  28. Fuchizaki, K. & Kawasaki, K. Dynamical density functional theory for glassy behaviour. J. Phys. Condens. Matter 14, 12203–12222 (2002).

    Article  ADS  Google Scholar 

  29. Stillinger, F. H. & Weber, T. A. Dynamics of structural transitions in liquids. Phys. Rev. A 28, 2408–2416 (1983).

    Article  ADS  Google Scholar 

  30. Hall, R. W. & Wolynes, P. G. Microscopic theory of network glasses. Phys. Rev. Lett. 90, 085505 (2003).

    Article  ADS  Google Scholar 

  31. Villain, J. Equilibrium critical properties of random field systems — new conjectures. J. Physique 46, 1843–1852 (1985).

    Article  Google Scholar 

  32. Dzero, M., Schmalian, J. & Wolynes, P. G. Activated events in glasses: The structure of entropic droplets. Phys. Rev. B 72, 100201 (2005).

    Article  ADS  Google Scholar 

  33. Stevenson, J. D. & Wolynes, P. G. Thermodynamic-kinetic correlations in supercooled liquids: A critical survey of experimental data and predictions of the random first-order transition theory of glasses. J. Phys. Chem. B 109, 15093–15097 (2005).

    Article  Google Scholar 

  34. Lubchenko, V. & Wolynes, P. G. Barrier softening near the onset of nonactivated transport in supercooled liquids: Implications for establishing detailed connection between thermodynamic and kinetic anomalies in supercooled liquids. J. Chem. Phys. 119, 9088–9105 (2003).

    Article  ADS  Google Scholar 

  35. Stauffer, D. Monte-carlo study of density profile, radius, and perimeter for percolation clusters and lattice animals. Phys. Rev. Lett. 41, 1333–1336 (1978).

    Article  ADS  Google Scholar 

  36. Leath, P. L. Cluster size and boundary distribution near percolation threshold. Phys. Rev. B 14, 5046–5055 (1976).

    Article  ADS  Google Scholar 

  37. Yang, C. N. & Lee, T. D. Statistical theory of equations of state and phase transitions. I Theory of condensation. Phys. Rev. 87, 404–409 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  38. Sykes, M. F., Gaunt, D. S. & Glen, M. Percolation processes in three dimensions. J. Phys. A 9, 1705–1712 (1976).

    Article  ADS  Google Scholar 

  39. Cao, Q. Z. & Wong, P. O. External surface of site percolation clusters in three dimensions. J. Phys. A 25, L69–L74 (1992).

    Article  ADS  Google Scholar 

  40. Stickel, F., Fischer, E. W. & Richert, R. Dynamics of glass-forming liquids. 2. detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data. J. Chem. Phys. 104, 2043–2055 (1996).

    Article  ADS  Google Scholar 

  41. Novikov, V. N. & Sokolov, A. P. Universality of the dynamic crossover in glass-forming liquids: A ‘magic’ relaxation time. Phys. Rev. E 67, 031507 (2003).

    Article  ADS  Google Scholar 

  42. Chui, S. T. & Weeks, J. D. Phase-transition in 2-dimensional Coulomb gas, and interfacial roughening transition. Phys. Rev. B 14, 4976–4982 (1976).

    Article  ADS  Google Scholar 

  43. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, 1953).

    Google Scholar 

  44. Hinze, G., Brace, D. D., Gottke, S. D. & Fayer, M. D. A detailed test of mode-coupling theory on all time scales: Time domain studies of structural relaxation in a supercooled liquid. J. Chem. Phys. 113, 3723–3733 (2000).

    Article  ADS  Google Scholar 

  45. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1943).

    Article  ADS  Google Scholar 

  46. Berthier, L. et al. Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005).

    Article  ADS  Google Scholar 

  47. Tracht, U. et al. Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81, 2727–2730 (1998).

    Article  ADS  Google Scholar 

  48. Böhmer, R. & Angell, C. A. Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids. Phys. Rev. B 45, 10091–10094 (1992).

    Article  ADS  Google Scholar 

  49. Laughlin, W. T. & Uhlmann, D. R. Viscous flow in simple organic liquids. J. Phys. Chem. 76, 2317–2325 (1972).

    Article  Google Scholar 

  50. Cukierman, M., Lane, J. W. & Uhlmann, D. R. High-temperature flow behavior of glass-forming liquids: A free-volume interpretation. J. Chem. Phys. 59, 3639–3644 (1973).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work at UCSD was supported by NSF grant CHE0317017. J.S. was supported by the Ames Laboratory, operated for the US Department of Energy by Iowa State University under Contract No. W-7405-Eng-82 (J.S.). We would also like to acknowledge K. Schmidt-Rohr for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacob D. Stevenson or Peter G. Wolynes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, J., Schmalian, J. & Wolynes, P. The shapes of cooperatively rearranging regions in glass-forming liquids. Nature Phys 2, 268–274 (2006). https://doi.org/10.1038/nphys261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing